Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom Deboer is active.

Publication


Featured researches published by Tom Deboer.


Nature Neuroscience | 2003

Sleep states alter activity of suprachiasmatic nucleus neurons

Tom Deboer; Mariska J. Vansteensel; László Détári; Johanna H. Meijer

The timing of sleep and wakefulness in mammals is governed by a sleep homeostatic process and by the circadian clock of the suprachiasmatic nucleus (SCN), which has a molecular basis for rhythm generation. By combining SCN electrical activity recordings with electroencephalogram (EEG) recordings in the same animal (the Wistar rat), we discovered that changes in vigilance states are paralleled by strong changes in SCN electrophysiological activity. During rapid eye movement (REM) sleep, neuronal activity in the SCN was elevated, and during non-REM (NREM) sleep, it was lowered. We also carried out selective sleep deprivation experiments to confirm that changes in SCN electrical activity are caused by changes in vigilance state. Our results indicate that the 24-hour pattern in electrical activity that is controlled by the molecular machinery of the SCN is substantially modified by afferent information from the central nervous system.


Brain Research | 2000

Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations.

Reto Huber; Tom Deboer; Irene Tobler

Gene targeted mice can be used as models to investigate the mechanisms underlying sleep regulation. Three commonly used background strains for gene targeting (129/Ola, 129/SvJ and C57BL/6J) were subjected to 4-h and 6-h sleep deprivation (SD), and their sleep and sleep EEG were continuously recorded. The two-process model of sleep regulation has predicted the time course of slow-wave activity (SWA) in nonREM sleep after several sleep-wake manipulations in humans and the rat [3] [9]. We tested the capacity of the model to predict SWA in nonREM sleep on the basis of the temporal organization of sleep in mice. The strains differed in the amount and distribution of sleep and the time course of SWA. After spontaneous waking episodes of 10-30 min as well as after SD, SWA was invariably increased. Simulations of the time course of SWA were successful for 129/SvJ and C57BL/6J, but were not satisfactory for 129/Ola. Since the time constants are assumed to reflect the dynamics of the physiological processes involved in sleep regulation, the results provide a basis for the use of gene targeted mice to investigate the underlying mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Diazepam-induced changes in sleep: Role of the α1 GABAA receptor subtype

Irene Tobler; Caroline Kopp; Tom Deboer; Uwe Rudolph

Ligands acting at the benzodiazepine (BZ) site of γ-aminobutyric acid type A (GABAA) receptors currently are the most widely used hypnotics. BZs such as diazepam (Dz) potentiate GABAA receptor activation. To determine the GABAA receptor subtypes that mediate the hypnotic action of Dz wild-type mice and mice that harbor Dz-insensitive α1 GABAA receptors [α1 (H101R) mice] were compared. Sleep latency and the amount of sleep after Dz treatment were not affected by the point mutation. An initial reduction of rapid eye movement (REM) sleep also occurred equally in both genotypes. Furthermore, the Dz-induced changes in the sleep and waking electroencephalogram (EEG) spectra, the increase in power density above 21 Hz in non-REM sleep and waking, and the suppression of slow-wave activity (SWA; EEG power in the 0.75- to 4.0-Hz band) in non-REM sleep were present in both genotypes. Surprisingly, these effects were even more pronounced in α1(H101R) mice and sleep continuity was enhanced by Dz only in the mutants. Interestingly, Dz did not affect the initial surge of SWA at the transitions to sleep, indicating that the SWA-generating mechanisms are not impaired by the BZ. We conclude that the REM sleep inhibiting action of Dz and its effect on the EEG spectra in sleep and waking are mediated by GABAA receptors other than α1, i.e., α2, α3, or α5 GABAA receptors. Because α1 GABAA receptors mediate the sedative action of Dz, our results provide evidence that the hypnotic effect of Dz and its EEG “fingerprint” can be dissociated from its sedative action.


Current Biology | 2007

Seasonal Encoding by the Circadian Pacemaker of the SCN

Henk Tjebbe vanderLeest; Thijs Houben; Stephan Michel; Tom Deboer; Henk Albus; Mariska J. Vansteensel; Gene D. Block; Johanna H. Meijer

The circadian pacemaker of the suprachiasmatic nucleus (SCN) functions as a seasonal clock through its ability to encode day length [1-6]. To investigate the mechanism by which SCN neurons code for day length, we housed mice under long (LD 16:8) and short (LD 8:16) photoperiods. Electrophysiological recordings of multiunit activity (MUA) in the SCN of freely moving mice revealed broad activity profiles in long days and compressed activity profiles in short days. The patterns remained consistent after release of the mice in constant darkness. Recordings of MUA in acutely prepared hypothalamic slices showed similar differences between the SCN electrical activity patterns in vitro in long and short days. In vitro recordings of neuronal subpopulations revealed that the width of the MUA activity profiles was determined by the distribution of phases of contributing units within the SCN. The subpopulation patterns displayed a significantly broader distribution in long days than in short days. Long-term recordings of single-unit activity revealed short durations of elevated activity in both short and long days (3.48 and 3.85 hr, respectively). The data indicate that coding for day length involves plasticity within SCN neuronal networks in which the phase distribution of oscillating neurons carries information on the photoperiods duration.


Journal of Sleep Research | 2016

The two-process model of sleep regulation: a reappraisal.

Alexander A. Borbély; Serge Daan; Anna Wirz-Justice; Tom Deboer

In the last three decades the two‐process model of sleep regulation has served as a major conceptual framework in sleep research. It has been applied widely in studies on fatigue and performance and to dissect individual differences in sleep regulation. The model posits that a homeostatic process (Process S) interacts with a process controlled by the circadian pacemaker (Process C), with time‐courses derived from physiological and behavioural variables. The model simulates successfully the timing and intensity of sleep in diverse experimental protocols. Electrophysiological recordings from the suprachiasmatic nuclei (SCN) suggest that S and C interact continuously. Oscillators outside the SCN that are linked to energy metabolism are evident in SCN‐lesioned arrhythmic animals subjected to restricted feeding or methamphetamine administration, as well as in human subjects during internal desynchronization. In intact animals these peripheral oscillators may dissociate from the central pacemaker rhythm. A sleep/fast and wake/feed phase segregate antagonistic anabolic and catabolic metabolic processes in peripheral tissues. A deficiency of Process S was proposed to account for both depressive sleep disturbances and the antidepressant effect of sleep deprivation. The model supported the development of novel non‐pharmacological treatment paradigms in psychiatry, based on manipulating circadian phase, sleep and light exposure. In conclusion, the model remains conceptually useful for promoting the integration of sleep and circadian rhythm research. Sleep appears to have not only a short‐term, use‐dependent function; it also serves to enforce rest and fasting, thereby supporting the optimization of metabolic processes at the appropriate phase of the 24‐h cycle.


The Journal of Neuroscience | 2012

Evidence for Neuronal Desynchrony in the Aged Suprachiasmatic Nucleus Clock

Sahar Farajnia; Stephan Michel; Tom Deboer; Henk Tjebbe vanderLeest; Thijs Houben; Jos H. T. Rohling; Ashna Ramkisoensing; Roman Yasenkov; Johanna H. Meijer

Aging is associated with a deterioration of daily (circadian) rhythms in physiology and behavior. Deficits in the function of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) have been implicated, but the responsible mechanisms have not been clearly delineated. In this report, we characterize the progression of rhythm deterioration in mice to 900 d of age. Longitudinal behavioral and sleep–wake recordings in up to 30-month-old mice showed strong fragmentation of rhythms, starting at the age of 700 d. Patch-clamp recordings in this age group revealed deficits in membrane properties and GABAergic postsynaptic current amplitude. A selective loss of circadian modulation of fast delayed-rectifier and A-type K+ currents was observed. At the tissue level, phase synchrony of SCN neurons was grossly disturbed, with some subpopulations peaking in anti-phase and a reduction in amplitude of the overall multiunit activity rhythm. We propose that aberrant SCN rhythmicity in old animals—with electrophysiological arrhythmia at the single-cell level and phase desynchronization at the network level—can account for defective circadian function with aging.


Neuroreport | 2002

Sleep deprivation in prion protein deficient mice and control mice: genotype dependent regional rebound

Reto Huber; Tom Deboer; Irene Tobler

We have previously reported a larger and more prolonged increase of slow wave activity (SWA) in NREM sleep after sleep deprivation (SD) in prion protein deficient mice (PrP) compared to wild-type mice. Regional differences in the SWA increase were investigated by comparing the effect of 6 h SD on a frontal and occipital derivation in PrP deficient mice and wild-type mice. The larger increase of SWA after SD in PrP deficient mice was restricted to the occipital derivation. The difference appeared after the waking–NREM sleep transitions, making it unlikely that PrP is involved in the mechanisms enabling the transition to sleep. Our findings may reflect differences between the genotypes in the need for recovery in this particular brain region.


Neuroscience | 2004

Convergence of circadian and sleep regulatory mechanisms on hypocretin-1

Tom Deboer; Sebastiaan Overeem; N.A.H. Visser; Hans Duindam; Marijke Frölich; G. J. Lammers; Johanna H. Meijer

Hypocretin is a potential regulator of sleep and wakefulness and its levels fluctuate with the day-night cycle with high levels during the animals activity period. Whether the daily fluctuations are driven endogenously or by external light cycles is unknown. We investigated the circadian and homeostatic regulation of hypocretin in the absence of environmental light cycles. To this purpose we performed repetitive samplings of cerebrospinal fluid in rats through implanted microcannulas in the cisterna magna and determined hypocretin-1 levels by radioimmunoassay. These experiments were also performed in rats that received a lesion of the suprachiasmatic nucleus (SCN), a major pacemaker for circadian rhythms in mammals. The results showed sustained rhythmicity of hypocretin in constant dim red light in control animals. SCN-lesioned animals showed no circadian rhythms in hypocretin and mean hypocretin levels were remarkably low. The results indicate that the SCN is indispensable for rhythmicity in hypocretin and induces a daily increase in hypocretin levels during the animals active phase. Additional sleep deprivation experiments were carried out to investigate homeostatic regulation of hypocretin. Hypocretin levels increased in response to sleep deprivation in both control and SCN-lesioned animals, demonstrating that sleep homeostatic control of hypocretin occurs independently from the SCN. Our data indicate that the circadian pacemaker of the SCN and sleep homeostatic mechanisms converge on one single sleep regulatory substance.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 1994

Sleep and cortical temperature in the Djungarian hamster under baseline conditions and after sleep deprivation.

Tom Deboer; P. Franken; L. Tobler

The Djungarian hamster (Phodopus sungorus) is a markedly photoperiodic rodent which exhibits daily torpor under short photoperiod. Normative data were obtained on vigilance states, electroencephalogram (EEG) power spectra (0.25–25.0 Hz), and cortical temperature (TCRT) under a 16∶8 h light-dark schedule, in 7 Djungarian hamsters for 2 baseline days, 4 h sleep deprivation (SD) and 20 h recovery.During the baseline days total sleep time amounted to 59% of recording time, 67% in the light period and 43% in the dark period. The 4 h SD induced a small increase in the amount of non-rapid eye movement (NREM) sleep and a marked increase in EEG slow-wave activity (SWA; mean power density 0.75–4.0 Hz) within NREM sleep in the first hours of recovery. TCRT was lower in the light period than in the dark period. It decreased at transitions from either waking or rapid eye movement (REM) sleep to NREM sleep, and increased at the transition from NREM sleep to waking or REM sleep. After SD, TCRT was lower in all vigilance states.In conclusion, the sleep-wake pattern, EEG spectrum, and time course of TCRT in the Djungarian hamster are similar to other nocturnal rodents. Also in the Djungarian hamster the time course of SWA seems to reflect a homeostatically regulated process as was formulated in the two-process model of sleep regulation.


PLOS ONE | 2010

Rapid Changes in the Light/Dark Cycle Disrupt Memory of Conditioned Fear in Mice

Dawn H. Loh; Juliana Navarro; Arkady Hagopian; Louisa M. Wang; Tom Deboer; Christopher S. Colwell

Background Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD) cycle. Such “jet lag” treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. Methodology/Principal Findings We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. Conclusions/Significance Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.

Collaboration


Dive into the Tom Deboer's collaboration.

Top Co-Authors

Avatar

Johanna H. Meijer

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Michel

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thijs Houben

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jos H. T. Rohling

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Maria Panagiotou

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge