Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna H. Meijer is active.

Publication


Featured researches published by Johanna H. Meijer.


Nature Neuroscience | 2003

Sleep states alter activity of suprachiasmatic nucleus neurons

Tom Deboer; Mariska J. Vansteensel; László Détári; Johanna H. Meijer

The timing of sleep and wakefulness in mammals is governed by a sleep homeostatic process and by the circadian clock of the suprachiasmatic nucleus (SCN), which has a molecular basis for rhythm generation. By combining SCN electrical activity recordings with electroencephalogram (EEG) recordings in the same animal (the Wistar rat), we discovered that changes in vigilance states are paralleled by strong changes in SCN electrophysiological activity. During rapid eye movement (REM) sleep, neuronal activity in the SCN was elevated, and during non-REM (NREM) sleep, it was lowered. We also carried out selective sleep deprivation experiments to confirm that changes in SCN electrical activity are caused by changes in vigilance state. Our results indicate that the 24-hour pattern in electrical activity that is controlled by the molecular machinery of the SCN is substantially modified by afferent information from the central nervous system.


Current Biology | 2008

Regulation of Monoamine Oxidase A by Circadian-Clock Components Implies Clock Influence on Mood

Gabriele Hampp; Jürgen A. Ripperger; Thijs Houben; Isabelle Schmutz; Christian Blex; Stéphanie Perreau-Lenz; Irene Brunk; Rainer Spanagel; Gudrun Ahnert-Hilger; Johanna H. Meijer; Urs Albrecht

The circadian clock has been implicated in addiction and several forms of depression [1, 2], indicating interactions between the circadian and the reward systems in the brain [3-5]. Rewards such as food, sex, and drugs influence this system in part by modulating dopamine neurotransmission in the mesolimbic dopamine reward circuit, including the ventral tegmental area (VTA) and the ventral striatum (NAc). Hence, changes in dopamine levels in these brain areas are proposed to influence mood in humans and mice [6-10]. To establish a molecular link between the circadian-clock mechanism and dopamine metabolism, we analyzed the murine promoters of genes encoding key enzymes important in dopamine metabolism. We find that transcription of the monoamine oxidase A (Maoa) promoter is regulated by the clock components BMAL1, NPAS2, and PER2. A mutation in the clock gene Per2 in mice leads to reduced expression and activity of MAOA in the mesolimbic dopaminergic system. Furthermore, we observe increased levels of dopamine and altered neuronal activity in the striatum, and these results probably lead to behavioral alterations observed in Per2 mutant mice in despair-based tests. These findings suggest a role of circadian-clock components in dopamine metabolism highlighting a role of the clock in regulating mood-related behaviors.


Current Biology | 2005

A GABAergic Mechanism Is Necessary for Coupling Dissociable Ventral and Dorsal Regional Oscillators within the Circadian Clock

Henk Albus; Mariska J. Vansteensel; Stephan Michel; Gene D. Block; Johanna H. Meijer

BACKGROUND Circadian rhythms in mammalian behavior, physiology, and biochemistry are controlled by the central clock of the suprachiasmatic nucleus (SCN). The clock is synchronized to environmental light-dark cycles via the retino-hypothalamic tract, which terminates predominantly in the ventral SCN of the rat. In order to understand synchronization of the clock to the external light-dark cycle, we performed ex vivo recordings of spontaneous impulse activity in SCN slices of the rat. RESULTS We observed bimodal patterns of spontaneous impulse activity in the dorsal and ventral SCN after a 6 hr delay of the light schedule. Bisection of the SCN slice revealed a separate fast-resetting oscillator in the ventral SCN and a distinct slow-resetting oscillator in the dorsal SCN. Continuous application of the GABA(A) antagonist bicuculline yielded similar results as cut slices. Short application of bicuculline at different phases of the circadian cycle increased the electrical discharge rate in the ventral SCN but, unexpectedly, decreased activity in the dorsal SCN. CONCLUSIONS GABA transmits phase information between the ventral and dorsal SCN oscillators. GABA can act excitatory in the dorsal SCN and inhibits neurons in the ventral SCN. We hypothesize that this difference results in asymmetrical interregional coupling within the SCN, with a stronger phase-shifting effect of the ventral on the dorsal SCN than vice versa. A model is proposed that focuses on this asymmetry and on the role of GABA in phase regulation.


Brain Research | 1986

Luminance coding in a circadian pacemaker: the suprachiasmatic nucleus of the rat and the hamster.

Johanna H. Meijer; Gerard A. Groos; Benjamin Rusak

The hypothalamic suprachiasmatic nuclei (SCN) of mammals function as a pacemaker driving circadian rhythms. This pacemaker is entrained to the daily light-dark cycle in the environment via the retina and central retinal projections to the anterior hypothalamus. We carried out a comparative study of the visual properties of rat and hamster SCN neurons. Extracellular single cell activity was recorded in the SCN of urethane-anaesthetized animals. In both species, visual SCN neurons responded to retinal illumination with a sustained increase or a sustained decrease in electrical discharge. The majority (75%) of these cells were activated by light. In both the rat and the hamster SCN, visually responsive cells altered their discharge rate as a monotonic function of luminance. The intensity-response curve could be described by a Michaelis function with a small working range between threshold and saturation (2-3 log units) and a relatively high threshold. Intensity-response curves in both species were occasionally different for increasing as opposed to decreasing luminance. Thus, hysteresis effects of illumination may occur in the SCN. The spontaneous firing rates as well as the responsiveness of visual SCN cells were subject to marked variations between and within cells. The overall photic responsiveness of SCN neurons, however, indicated that they are specialized for luminance coding in the range of light intensities naturally occurring at dawn and dusk. This property makes these cells suitable to mediate photic entrainment of circadian rhythms as well as the measurement of photoperiod.


Journal of Biological Rhythms | 2003

In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus.

Johanna H. Meijer; William J. Schwartz

Within the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is a circadian pacemaker that functions as a clock. Its endogenous period is adjusted to the external 24-h light-dark cycle, primarily by light-induced phase shifts that reset the pacemakers oscillation. Evidence using a wide variety of neurobiological and molecular genetic tools has elucidated key elements that comprise the visual input pathway for SCN photoentrainment in rodents. Important questions remain regarding the intracellular signals that reset the autoregulatory molecular loop within photoresponsive cells in the SCNs retino-recipient subdivision, as well as the intercellular coupling mechanisms that enable SCN tissue to generate phase shifts of overt behavioral and physiological circadian rhythms such as locomotion and SCN neuronal firing rate. Multiple neurotransmitters, protein kinases, and photoinducible genes add to system complexity, and we still do not fully understand how dawn and dusk light pulses ultimately produce bidirectional, advancing and delaying phase shifts for pacemaker entrainment.


Brain Research | 1989

Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract

Benjamin Rusak; Johanna H. Meijer; Mary E. Harrington

The suprachiasmatic nuclei (SCN) contain the major pacemaker for mammalian circadian rhythms. The SCN receive photic input both directly, via the retinohypothalamic tract (RHT), and indirectly, via the geniculohypothalamic tract (GHT), which originates in cells in the intergeniculate leaflet (IGL) and anterior portions of the ventral lateral geniculate nucleus (vLGN). We tested whether electrical stimulation of the GHT would induce phase shifts in wheel-running activity rhythms of Syrian hamsters housed in continuous darkness or continuous illumination. In both lighting conditions, electrical stimulation of the GHT induced mainly phase advances when given during the late subjective day and small phase delays when given during the late subjective night and early subjective day. Stimulation in the thalamus outside the GHT failed to produce similar phase shifts. Repeated daily stimulation had only a weak entraining effect on the activity rhythm. Activation of GHT neurons appears to influence the pacemaker for activity rhythms in a phase-dependent manner.


Current Biology | 2007

Seasonal Encoding by the Circadian Pacemaker of the SCN

Henk Tjebbe vanderLeest; Thijs Houben; Stephan Michel; Tom Deboer; Henk Albus; Mariska J. Vansteensel; Gene D. Block; Johanna H. Meijer

The circadian pacemaker of the suprachiasmatic nucleus (SCN) functions as a seasonal clock through its ability to encode day length [1-6]. To investigate the mechanism by which SCN neurons code for day length, we housed mice under long (LD 16:8) and short (LD 8:16) photoperiods. Electrophysiological recordings of multiunit activity (MUA) in the SCN of freely moving mice revealed broad activity profiles in long days and compressed activity profiles in short days. The patterns remained consistent after release of the mice in constant darkness. Recordings of MUA in acutely prepared hypothalamic slices showed similar differences between the SCN electrical activity patterns in vitro in long and short days. In vitro recordings of neuronal subpopulations revealed that the width of the MUA activity profiles was determined by the distribution of phases of contributing units within the SCN. The subpopulation patterns displayed a significantly broader distribution in long days than in short days. Long-term recordings of single-unit activity revealed short durations of elevated activity in both short and long days (3.48 and 3.85 hr, respectively). The data indicate that coding for day length involves plasticity within SCN neuronal networks in which the phase distribution of oscillating neurons carries information on the photoperiods duration.


Neuroscience Letters | 1988

Glutamate phase shifts circadian activity rhythms in hamsters

Johanna H. Meijer; van der Eddy Zee; Maurine W. Dietz

The suprachiasmatic nuclei (SCN) have been identified as a pacemaker for many circadian rhythms in mammals. Photic entrainment of this pacemaker can be accomplished via the direct retino-hypothalamic tract (RHT). Glutamate is a putative transmitter of the RHT. In the present study it is demonstrated that glutamate injections in the SCN cause phase shifts of the circadian activity rhythm of the hamster. In contrast, glutamate injections outside the SCN or vehicle injections inside the SCN did not affect the circadian phase. These data suggest that glutamate could be involved in photic entrainment of the circadian pacemaker.


Brain Research | 1993

Glutamate immunoreactivity in terminals of the retinohypothalamic tract of the brown Norwegian rat

Martinus J. De Vries; Bob Nunes Cardozo; Johannes van der Want; Anneke de Wolf; Johanna H. Meijer

The mammalian circadian pacemaker of the suprachiasmatic nucleus (SCN) is entrained to the environmental light-dark cycle via a retinal projection, the retinohypothalamic tract (RHT). Several studies suggest that an excitatory amino acid, possibly glutamate, is involved in photic entrainment. However, it has not yet been established whether glutamate is a transmitter of the RHT itself. We have now identified terminals of the RHT in the SCN of brown Norwegian rats by intravitreous injections of horse radish peroxidase conjugated to cholera toxin. To detect glutamate immunoreactivity (IR), post-embedding immunocytochemistry was performed with polyclonal antibodies which were visualized for electron microscopy with colloidal gold particles. Retinal terminals had a significantly 82% higher glutamate-IR than their post-synaptic dendrites and a significantly 76% higher glutamate-IR than non-retinal terminals. These observations provide ultrastructural evidence that glutamate is a transmitter of the RHT.


The FASEB Journal | 2013

Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity

Claudia P. Coomans; Sjoerd A. A. van den Berg; Thijs Houben; Jan-Bert van Klinken; Rosa van den Berg; Amanda Pronk; Louis M. Havekes; Johannes A. Romijn; Ko Willems van Dijk; Nienke R. Biermasz; Johanna H. Meijer

Circadian rhythm disturbances are observed in, e.g., aging and neurodegenerative diseases and are associated with an increased incidence of obesity and diabetes. We subjected male C57Bl/6J mice to constant light [12‐h light‐light (LL) cycle] to examine the effects of a disturbed circadian rhythm on energy metabolism and insulin sensitivity. In vivo electrophysiological recordings in the central pacemaker of the suprachiasmatic nuclei (SCN) revealed an immediate reduction in rhythm amplitude, stabilizing at 44% of normal amplitude values after 4 d LL. Food intake was increased (+26%) and energy expenditure decreased (–13%), and we observed immediate body weight gain (d 4: +2.4%, d 14: +5.0%). Mixed model analysis revealed that weight gain developed more rapidly in response to LL as compared to high fat. After 4 wk in LL, the circadian pattern in feeding and energy expenditure was completely lost, despite continuing low‐amplitude rhythms in the SCN and in behavior, whereas weight gain had stabilized. Hyperinsulinemic‐euglycemic clamp analysis revealed complete abolishment of normal circadian variation in insulin sensitivity in LL. In conclusion, a reduction in amplitude of the SCN, to values previously observed in aged mice, is sufficient to induce a complete loss of circadian rhythms in energy metabolism and insulin sensitivity.—Coomans, C. P., van den Berg, S. A. A., Houben, T., van Klinken, J.‐B., van den Berg, R., Pronk, A. C. M., Havekes, L. M., Romijn, J. A., Willems van Dijk, K., Biermasz, N. R., Meijer, J. H. Detrimental effects of constant light exposure and high‐fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 27, 1721–1732 (2013). www.fasebj.org

Collaboration


Dive into the Johanna H. Meijer's collaboration.

Top Co-Authors

Avatar

Stephan Michel

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tom Deboer

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thijs Houben

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jos H. T. Rohling

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia P. Coomans

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henk Tjebbe vanderLeest

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ashna Ramkisoensing

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge