Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom J. Savenije is active.

Publication


Featured researches published by Tom J. Savenije.


Journal of the American Chemical Society | 2014

Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination

Carlito S. Ponseca; Tom J. Savenije; Mohamed Abdellah; Kaibo Zheng; Arkady Yartsev; Tobjörn Pascher; Tobias Harlang; Pavel Chábera; Tõnu Pullerits; Andrey Stepanov; Jean-Pierre Wolf; Villy Sundström

Organometal halide perovskite-based solar cells have recently been reported to be highly efficient, giving an overall power conversion efficiency of up to 15%. However, much of the fundamental photophysical properties underlying this performance has remained unknown. Here, we apply photoluminescence, transient absorption, time-resolved terahertz and microwave conductivity measurements to determine the time scales of generation and recombination of charge carriers as well as their transport properties in solution-processed CH3NH3PbI3 perovskite materials. We found that electron-hole pairs are generated almost instantaneously after photoexcitation and dissociate in 2 ps forming highly mobile charges (25 cm(2) V(-1) s(-1)) in the neat perovskite and in perovskite/alumina blends; almost balanced electron and hole mobilities remain very high up to the microsecond time scale. When the perovskite is introduced into a TiO2 mesoporous structure, electron injection from perovskite to the metal oxide is efficient in less than a picosecond, but the lower intrinsic electron mobility of TiO2 leads to unbalanced charge transport. Microwave conductivity measurements showed that the decay of mobile charges is very slow in CH3NH3PbI3, lasting up to tens of microseconds. These results unravel the remarkable intrinsic properties of CH3NH3PbI3 perovskite material if used as light absorber and charge transport layer. Moreover, finding a metal oxide with higher electron mobility may further increase the performance of this class of solar cells.


Chemical Physics Letters | 1998

Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer

Tom J. Savenije; John M. Warman; Albert Goossens

Abstract The photophysical properties of thin films of poly[2-methoxy-5-(2′-ethyl-hexyloxy), para -phenylene vinylene] (MEH-PPV) on TiO 2 substrates have been investigated. Evidence for dissociation of excitons at the MEH-PPV/TiO 2 interface and electron injection into the conduction band of TiO 2 has been found from current/voltage characteristics. The open circuit voltage is to 0.92 V for these cells and an energy conversion efficiency of 0.15% is found for white light. Capacitance measurements follow the Mott–Schottky relationship and reveal an acceptor density of N A ≈9×10 17 cm −3 for the polymer layers. From analysis of the luminescence as a function of the film thickness, an exciton diffusion length of 20±3 nm for MEH-PPV is derived.


Journal of Physical Chemistry Letters | 2014

Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite

Tom J. Savenije; Carlito S. Ponseca; Lucas Kunneman; Mohamed Abdellah; Kaibo Zheng; Yuxi Tian; Qiushi Zhu; Sophie E. Canton; Ivan G. Scheblykin; Tõnu Pullerits; Arkady Yartsev; Villy Sundström

Solar cells based on organometal halide perovskites have seen rapidly increasing efficiencies, now exceeding 15%. Despite this progress, there is still limited knowledge on the fundamental photophysics. Here we use microwave photoconductance and photoluminescence measurements to investigate the temperature dependence of the carrier generation, mobility, and recombination in (CH3NH3)PbI3. At temperatures maintaining the tetragonal crystal phase of the perovskite, we find an exciton binding energy of about 32 meV, leading to a temperature-dependent yield of highly mobile (6.2 cm(2)/(V s) at 300 K) charge carriers. At higher laser intensities, second-order recombination with a rate constant of γ = 13 × 10(-10) cm(3) s(-1) becomes apparent. Reducing the temperature results in increasing charge carrier mobilities following a T(-1.6) dependence, which we attribute to a reduction in phonon scattering (Σμ = 16 cm(2)/(V s) at 165 K). Despite the fact that Σμ increases, γ diminishes with a factor six, implying that charge recombination in (CH3NH3)PbI3 is temperature activated. The results underline the importance of the perovskite crystal structure, the exciton binding energy, and the activation energy for recombination as key factors in optimizing new perovskite materials.


Nature Nanotechnology | 2011

Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids

Elise Talgorn; Yunan Gao; Michiel Aerts; Lucas T. Kunneman; Juleon M. Schins; Tom J. Savenije; Marijn A. van Huis; Herre S. J. van der Zant; Arjan J. Houtepen; Laurens D. A. Siebbeles

Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.


Nature Materials | 2017

Direct–indirect character of the bandgap in methylammonium lead iodide perovskite

Eline M. Hutter; Anna Osherov; Vladimir Bulovic; Ferdinand C. Grozema; Samuel D. Stranks; Tom J. Savenije

Metal halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) are generating great excitement due to their outstanding optoelectronic properties, which lend them to application in high-efficiency solar cells and light-emission devices. However, there is currently debate over what drives the second-order electron-hole recombination in these materials. Here, we propose that the bandgap in CH3NH3PbI3 has a direct-indirect character. Time-resolved photo-conductance measurements show that generation of free mobile charges is maximized for excitation energies just above the indirect bandgap. Furthermore, we find that second-order electron-hole recombination of photo-excited charges is retarded at lower temperature. These observations are consistent with a slow phonon-assisted recombination pathway via the indirect bandgap. Interestingly, in the low-temperature orthorhombic phase, fast quenching of mobile charges occurs independent of the temperature and photon excitation energy. Our work provides a new framework to understand the optoelectronic properties of metal halide perovskites and analyse spectroscopic data.


Journal of Physical Chemistry Letters | 2015

Charge Carriers in Planar and Meso-Structured Organic–Inorganic Perovskites: Mobilities, Lifetimes, and Concentrations of Trap States

Eline M. Hutter; Giles E. Eperon; Samuel D. Stranks; Tom J. Savenije

Efficient solar cells have been obtained using thin films of solution-processed organic-inorganic perovskites. However, there remains limited knowledge about the relationship between preparation route and optoelectronic properties. We use complementary time-resolved microwave conductivity (TRMC) and photoluminescence (PL) measurements to investigate the charge carrier dynamics in thin planar films of CH3NH3PbI(3-x)Cl(x), CH3NH3PbI3, and their meso-structured analogues. High mobilities close to 30 cm(2)/(V s) and microsecond-long lifetimes are found in thin films of CH3NH3PbI(3-x)Cl(x), compared to lifetimes of only a few hundred nanoseconds in CH3NH3PbI3 and meso-structured perovskites. We describe our TRMC and PL experiments with a global kinetic model, using one set of kinetic parameters characteristic for each sample. We find that the trap density is less than 5 × 10(14) cm(-3) in CH3NH3PbI(3-x)Cl(x), 6 × 10(16) cm(-3) in the CH3NH3PbI3 thin film and ca. 10(15) cm(-3) in both meso-structured perovskites. Furthermore, our results imply that band-to-band recombination is enhanced by the presence of dark carriers resulting from unintentional doping of the perovskites. Finally, our general approach to determine concentrations of trap states and dark carriers is also highly relevant to other semiconductor materials.


ACS Nano | 2012

Photoconductivity of PbSe quantum-dot solids: dependence on ligand anchor group and length.

Yunan Gao; Michiel Aerts; C. S. Suchand Sandeep; Elise Talgorn; Tom J. Savenije; Sachin Kinge; Laurens D. A. Siebbeles; Arjan J. Houtepen

The assembly of quantum dots is an essential step toward many of their potential applications. To form conductive solids from colloidal quantum dots, ligand exchange is required. Here we study the influence of ligand replacement on the photoconductivity of PbSe quantum-dot solids, using the time-resolved microwave conductivity technique. Bifunctional replacing ligands with amine, thiol, or carboxylic acid anchor groups of various lengths are used to assemble quantum solids via a layer-by-layer dip-coating method. We find that when the ligand lengths are the same, the charge carrier mobility is higher in quantum-dot solids with amine ligands, while in quantum-dot solids with thiol ligands the charge carrier lifetime is longer. If the anchor group is the same, the charge carrier mobility is ligand length dependent. The results show that the diffusion length of charge carriers can reach several hundred nanometers.


Journal of Physical Chemistry Letters | 2016

Charge Carrier Lifetimes Exceeding 15 μs in Methylammonium Lead Iodide Single Crystals

Yu Bi; Eline M. Hutter; Yanjun Fang; Qingfeng Dong; Jinsong Huang; Tom J. Savenije

The charge carrier lifetime in organic-inorganic perovskites is one of the most important parameters for modeling and design of solar cells and other types of devices. In this work, we use CH3NH3PbI3 single crystal as a model system to study optical absorption, charge carrier generation, and recombination lifetimes. We show that commonly applied photoluminescence lifetime measurements may dramatically underestimate the intrinsic carrier lifetime in CH3NH3PbI3, which could be due to severe charge recombination at the crystal surface and/or fast electron-hole recombination close to the surface. By using the time-resolved microwave conductivity technique, we investigated the lifetime of free mobile charges inside the crystals. Most importantly, we find that for homogeneous excitation throughout the crystal, the charge carrier lifetime exceeds 15 μs. This means that the diffusion length in CH3NH3PbI3 can be as large as 50 μm if it is no longer limited by the dimensions of the crystallites.


Nature Communications | 2013

High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films

C. S. Suchand Sandeep; S. Ten Cate; Juleon M. Schins; Tom J. Savenije; Yu Liu; Matt Law; Sachin Kinge; Arjan J. Houtepen; Laurens D. A. Siebbeles

Carrier multiplication, the generation of multiple electron–hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has proved difficult. Here we show that by tuning the charge-carrier mobility in quantum-dot films, carrier multiplication can be optimized and may show an efficiency as high as in colloidal dispersion. Our results are explained quantitatively by the competition between dissociation of multiple electron–hole pairs and Auger recombination. Above a mobility of ~1 cm2 V−1 s−1, all charges escape Auger recombination and are quantitatively converted to free charges, offering the prospect of cheap quantum-dot solar cells with efficiencies in excess of the Shockley–Queisser limit. In addition, we show that the threshold energy for carrier multiplication is reduced to twice the band gap of the quantum dots.


Journal of the American Chemical Society | 2008

Efficient Exciton Transport in Layers of Self-Assembled Porphyrin Derivatives

Annemarie Huijser; Bart M. J. M. Suijkerbuijk; Robertus J. M. Klein Gebbink; Tom J. Savenije; Laurens D. A. Siebbeles

The photosynthetic apparatus of green sulfur bacteria, the chlorosome, is generally considered as a highly efficient natural light-harvesting system. The efficient exciton transport through chlorosomes toward the reaction centers originates from self-assembly of the bacteriochlorophyll molecules. The aim of the present work is to realize a long exciton diffusion length in an artificial light-harvesting system using the concept of self-assembled natural chlorosomal chromophores. The ability to transport excitons is studied for porphyrin derivatives with different tendencies to form molecular stacks by self-assembly. A porphyrin derivative denoted as ZnOP, containing methoxymethyl substituents ({meso-tetrakis[3,5-bis(methoxymethyl)phenyl]porphyrinato}zinc(II)) is found to form self-assembled stacks, in contrast to a derivative with tert-butyl substituents, ZnBuP ({meso-tetrakis[3,5-bis(tert-butyl)phenyl]porphyrinato}zinc(II)). Exciton transport and dissociation in a bilayer of these porphyrin derivatives and TiO2 are studied using the time-resolved microwave conductivity (TRMC) method. For ZnOP layers it is found that excitons undergo diffusive motion between the self-assembled stacks, with the exciton diffusion length being as long as 15 +/- 1 nm, which is comparable to that in natural chlorosomes. For ZnBuP a considerably shorter exciton diffusion length of 3 +/- 1 nm is found. Combining these exciton diffusion lengths with exciton lifetimes of 160 ps for ZnOP and 74 ps for ZnBuP yields exciton diffusion coefficients equal to 1.4 x 10(-6) m2/s and 1 x 10(-7) m2/s, respectively. The larger exciton diffusion coefficient for ZnOP originates from a strong excitonic coupling for interstack energy transfer. The findings show that energy transfer is strongly affected by the molecular organization. The efficient interstack energy transfer shows promising prospects for application of such self-assembled porphyrins in optoelectronics.

Collaboration


Dive into the Tom J. Savenije's collaboration.

Top Co-Authors

Avatar

Laurens D. A. Siebbeles

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

John M. Warman

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Eline M. Hutter

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Annemarie Huijser

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ferdinand C. Grozema

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juleon M. Schins

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Albert Goossens

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge