Tom Sante
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tom Sante.
American Journal of Human Genetics | 2014
Robert Kopajtich; Thomas J. Nicholls; Joanna Rorbach; Metodi D. Metodiev; Peter Freisinger; Hanna Mandel; Arnaud Vanlander; Daniele Ghezzi; Rosalba Carrozzo; Robert W. Taylor; Klaus Marquard; Kei Murayama; Thomas Wieland; Thomas Schwarzmayr; Johannes A. Mayr; Sarah F. Pearce; Christopher A. Powell; Ann Saada; Akira Ohtake; Federica Invernizzi; Eleonora Lamantea; Ewen W. Sommerville; Angela Pyle; Patrick F. Chinnery; Ellen Crushell; Yasushi Okazaki; Masakazu Kohda; Yoshihito Kishita; Yoshimi Tokuzawa; Zahra Assouline
Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.
PLOS Genetics | 2013
Hannah Verdin; Barbara D'haene; Diane Beysen; Yana Novikova; Björn Menten; Tom Sante; Pablo Lapunzina; Julián Nevado; Claudia M.B. Carvalho; James R. Lupski; Elfride De Baere
Genomic disorders are often caused by recurrent copy number variations (CNVs), with nonallelic homologous recombination (NAHR) as the underlying mechanism. Recently, several microhomology-mediated repair mechanisms—such as microhomology-mediated end-joining (MMEJ), fork stalling and template switching (FoSTeS), microhomology-mediated break-induced replication (MMBIR), serial replication slippage (SRS), and break-induced SRS (BISRS)—were described in the etiology of non-recurrent CNVs in human disease. In addition, their formation may be stimulated by genomic architectural features. It is, however, largely unexplored to what extent these mechanisms contribute to rare, locus-specific pathogenic CNVs. Here, fine-mapping of 42 microdeletions of the FOXL2 locus, encompassing FOXL2 (32) or its regulatory domain (10), serves as a model for rare, locus-specific CNVs implicated in genetic disease. These deletions lead to blepharophimosis syndrome (BPES), a developmental condition affecting the eyelids and the ovary. For breakpoint mapping we used targeted array-based comparative genomic hybridization (aCGH), quantitative PCR (qPCR), long-range PCR, and Sanger sequencing of the junction products. Microhomology, ranging from 1 bp to 66 bp, was found in 91.7% of 24 characterized breakpoint junctions, being significantly enriched in comparison with a random control sample. Our results show that microhomology-mediated repair mechanisms underlie at least 50% of these microdeletions. Moreover, genomic architectural features, like sequence motifs, non-B DNA conformations, and repetitive elements, were found in all breakpoint regions. In conclusion, the majority of these microdeletions result from microhomology-mediated mechanisms like MMEJ, FoSTeS, MMBIR, SRS, or BISRS. Moreover, we hypothesize that the genomic architecture might drive their formation by increasing the susceptibility for DNA breakage or promote replication fork stalling. Finally, our locus-centered study, elucidating the etiology of a large set of rare microdeletions involved in a monogenic disorder, can serve as a model for other clustered, non-recurrent microdeletions in genetic disease.
Genetics in Medicine | 2014
Frauke Coppieters; Kristof Van Schil; Miriam Bauwens; Hannah Verdin; Annelies De Jaegher; Delfien Syx; Tom Sante; Steve Lefever; Nouha Bouayed Abdelmoula; Fanny Depasse; Ingele Casteels; Thomy de Ravel; Françoise Meire; Bart P. Leroy; Elfride De Baere
Purpose:Autosomal recessive retinal dystrophies are clinically and genetically heterogeneous, which hampers molecular diagnosis. We evaluated identity-by-descent–guided Sanger sequencing or whole-exome sequencing in 26 families with nonsyndromic (19) or syndromic (7) autosomal recessive retinal dystrophies to identify disease-causing mutations.Methods:Patients underwent genome-wide identity-by-descent mapping followed by Sanger sequencing (16) or whole-exome sequencing (10). Whole-exome sequencing data were filtered against identity-by-descent regions and known retinal dystrophy genes. The medical history was reviewed in mutation-positive families.Results:We identified mutations in 14 known retinal dystrophy genes in 20/26 (77%) families: ABCA4, CERKL, CLN3, CNNM4, C2orf71, IQCB1, LRAT, MERTK, NMNAT1, PCDH15, PDE6B, RDH12, RPGRIP1, and USH2A. Whole-exome sequencing in single individuals revealed mutations in either the largest or smaller identity-by-descent regions, and a compound heterozygous genotype in NMNAT1. Moreover, a novel deletion was found in PCDH15. In addition, we identified mutations in CLN3, CNNM4, and IQCB1 in patients initially diagnosed with nonsyndromic retinal dystrophies.Conclusion:Our study emphasized that identity-by-descent–guided mutation analysis and/or whole-exome sequencing are powerful tools for the molecular diagnosis of retinal dystrophy. Our approach uncovered unusual molecular findings and unmasked syndromic retinal dystrophies, guiding future medical management. Finally, elucidating ABCA4, LRAT, and MERTK mutations offers potential gene-specific therapeutic perspectives.Genet Med 16 9, 671–680.
Scientific Reports | 2015
Lieselot Deleye; Dieter De Coninck; Christodoulos Christodoulou; Tom Sante; Annelies Dheedene; Björn Heindryckx; Etienne Van den Abbeel; Petra De Sutter; Björn Menten; Dieter Deforce; Filip Van Nieuwerburgh
Current whole genome amplification (WGA) methods lead to amplification bias resulting in over- and under-represented regions in the genome. Nevertheless, certain WGA methods, such as SurePlex and subsequent arrayCGH analysis, make it possible to detect copy number alterations (CNAs) at a 10 Mb resolution. A more uniform WGA combined with massive parallel sequencing (MPS), however, could allow detection at higher resolution and lower cost. Recently, MALBAC, a new WGA method, claims unparalleled performance. Here, we compared the well-established SurePlex and MALBAC WGA for their ability to detect CNAs in MPS generated data and, in addition, compared PCR-free MPS library preparation with the standard enrichment PCR library preparation. Results showed that SurePlex amplification led to more uniformity across the genome, allowing for a better CNA detection with less false positives compared to MALBAC amplified samples. An even more uniform coverage was observed in samples following a PCR-free library preparation. In general, the combination of SurePlex and MPS led to the same chromosomal profile compared to a reference arrayCGH from unamplified genomic DNA, underlining the large potential of MPS techniques in CNA detection from a limited number of DNA material.
Human Mutation | 2015
Arnaud Vanlander; Björn Menten; Joél Smet; Linda De Meirleir; Tom Sante; Boel De Paepe; Sara Seneca; Sarah F. Pearce; Christopher A. Powell; Sarah Vergult; Alex Michotte; Elien De Latter; Lies Vantomme; Michal Minczuk; Rudy Van Coster
A homozygous missense mutation (c.822G>C) was found in the gene encoding the mitochondrial asparaginyl–tRNA synthetase (NARS2) in two siblings born to consanguineous parents. These siblings presented with different phenotypes: one had mild intellectual disability and epilepsy in childhood, whereas the other had severe myopathy. Biochemical analysis of the oxidative phosphorylation (OXPHOS) complexes in both siblings revealed a combined complex I and IV deficiency in skeletal muscle. In‐gel activity staining after blue native‐polyacrylamide gel electrophoresis confirmed the decreased activity of complex I and IV, and, in addition, showed the presence of complex V subcomplexes. Considering the consanguineous descent, homozygosity mapping and whole‐exome sequencing were combined revealing the presence of one single missense mutation in the shared homozygous region. The c.822G>C variant affects the 3′ splice site of exon 7, leading to skipping of the whole exon 7 and a part of exon 8 in the NARS2 mRNA. In EBV‐transformed lymphoblasts, a specific decrease in the amount of charged mt‐tRNAAsn was demonstrated as compared with controls. This confirmed the pathogenic nature of the variant. To conclude, the reported variant in NARS2 results in a combined OXPHOS complex deficiency involving complex I and IV, making NARS2 a new member of disease‐associated aaRS2.
PLOS ONE | 2013
Candy Kumps; Annelies Fieuw; Pieter Mestdagh; Björn Menten; Steve Lefever; Filip Pattyn; Sara De Brouwer; Tom Sante; Johannes H. Schulte; Alexander Schramm; Nadine Van Roy; Tom Van Maerken; Rosa Noguera; Valérie Combaret; Christine Devalck; Frank Westermann; Genevieve Laureys; Angelika Eggert; Jo Vandesompele; Katleen De Preter; Frank Speleman
Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17∼92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17∼92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17∼92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1) target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2) serve as a resource for identifying new molecular targets for treatment.
PLOS ONE | 2014
Tom Sante; Sarah Vergult; Pieter-Jan Volders; Wigard P. Kloosterman; Geert Trooskens; Katleen De Preter; Annelies Dheedene; Franki Speleman; Tim De Meyer; Björn Menten
Structural genomic variations play an important role in human disease and phenotypic diversity. With the rise of high-throughput sequencing tools, mate-pair/paired-end/single-read sequencing has become an important technique for the detection and exploration of structural variation. Several analysis tools exist to handle different parts and aspects of such sequencing based structural variation analyses pipelines. A comprehensive analysis platform to handle all steps, from processing the sequencing data, to the discovery and visualization of structural variants, is missing. The ViVar platform is built to handle the discovery of structural variants, from Depth Of Coverage analysis, aberrant read pair clustering to split read analysis. ViVar provides you with powerful visualization options, enables easy reporting of results and better usability and data management. The platform facilitates the processing, analysis and visualization, of structural variation based on massive parallel sequencing data, enabling the rapid identification of disease loci or genes. ViVar allows you to scale your analysis with your work load over multiple (cloud) servers, has user access control to keep your data safe and is easy expandable as analysis techniques advance. URL: https://www.cmgg.be/vivar/
Fertility and Sterility | 2015
Lieselot Deleye; Annelies Dheedene; Dieter De Coninck; Tom Sante; Christodoulos Christodoulou; Björn Heindryckx; Etienne Van den Abbeel; Petra De Sutter; Dieter Deforce; Björn Menten; Filip Van Nieuwerburgh
OBJECTIVE To add evidence that massive parallel sequencing (MPS) is a valuable substitute for array comparative genomic hybridization (arrayCGH) with a resolution that is more appropriate for preimplantation genetic diagnosis (PGD) in translocation carriers. DESIGN Study of diagnostic accuracy. SETTING University hospital. PATIENT(S) Fifteen patients with a balanced structural rearrangement were included in the study: eight reciprocal translocations, four Robertsonian translocations, two inversions, and one insertional translocation. INTERVENTION(S) Trophectoderm biopsy was performed on 47 blastocysts. MAIN OUTCOME MEASURE(S) In the current study, shallow whole genome MPS on a NextSeq500 (Illumina) and Ion Proton (Life Technologies) instrument was performed in parallel on 47 whole genome amplified trophectoderm samples. Data analyses were performed using the QDNAseq algorithm implemented in Vivar. RESULT(S) In total, 5 normal and 42 abnormal embryos were analyzed. All aberrations previously detected with arrayCGH could be readily detected in the MPS data using both technologies and were correctly identified. The smallest detected abnormality was a ∼ 4.5 Mb deletion/duplication. CONCLUSION(S) This study demonstrates that shallow whole genome sequencing can be applied efficiently for the detection of numerical and structural chromosomal aberrations in embryos, equaling or even exceeding the resolution of the routinely used microarrays.
Genetics in Medicine | 2017
Caroline Van Cauwenbergh; Kristof Van Schil; Robrecht Cannoodt; Miriam Bauwens; Thalia Van Laethem; Sarah De Jaegere; Wouter Steyaert; Tom Sante; Björn Menten; Bart P. Leroy; Frauke Coppieters; Elfride De Baere
Purpose:Our goal was to design a customized microarray, arrEYE, for high-resolution copy number variant (CNV) analysis of known and candidate genes for inherited retinal dystrophy (iRD) and retina-expressed noncoding RNAs (ncRNAs).Methods:arrEYE contains probes for the full genomic region of 106 known iRD genes, including those implicated in retinitis pigmentosa (RP) (the most frequent iRD), cone–rod dystrophies, macular dystrophies, and an additional 60 candidate iRD genes and 196 ncRNAs. Eight CNVs in iRD genes identified by other techniques were used as positive controls. The test cohort consisted of 57 patients with autosomal dominant, X-linked, or simplex RP.Results:In an RP patient, a novel heterozygous deletion of exons 7 and 8 of the HGSNAT gene was identified: c.634-408_820+338delinsAGAATATG, p.(Glu212Glyfs*2). A known variant was found on the second allele: c.1843G>A, p.(Ala615Thr). Furthermore, we expanded the allelic spectrum of USH2A and RCBTB1 with novel CNVs.Conclusion:The arrEYE platform revealed subtle single-exon to larger CNVs in iRD genes that could be characterized at the nucleotide level, facilitated by the high resolution of the platform. We report the first CNV in HGSNAT that, combined with another mutation, leads to RP, further supporting its recently identified role in nonsyndromic iRD.Genet Med 19 4, 457–466.
European Journal of Human Genetics | 2014
Sarah Vergult; Ellen van Binsbergen; Tom Sante; Silke Nowak; Olivier Vanakker; Kathleen Claes; Bruce Poppe; Nathalie Van der Aa; Markus J. van Roosmalen; Karen Duran; Masoumeh Tavakoli-Yaraki; Marielle Swinkels; Marie-José H. van den Boogaard; Mieke M. van Haelst; Filip Roelens; Franki Speleman; Edwin Cuppen; Geert Mortier; Wigard P. Kloosterman; Björn Menten
Recently, microarrays have replaced karyotyping as a first tier test in patients with idiopathic intellectual disability and/or multiple congenital abnormalities (ID/MCA) in many laboratories. Although in about 14–18% of such patients, DNA copy-number variants (CNVs) with clinical significance can be detected, microarrays have the disadvantage of missing balanced rearrangements, as well as providing no information about the genomic architecture of structural variants (SVs) like duplications and complex rearrangements. Such information could possibly lead to a better interpretation of the clinical significance of the SV. In this study, the clinical use of mate pair next-generation sequencing was evaluated for the detection and further characterization of structural variants within the genomes of 50 ID/MCA patients. Thirty of these patients carried a chromosomal aberration that was previously detected by array CGH or karyotyping and suspected to be pathogenic. In the remaining 20 patients no causal SVs were found and only benign aberrations were detected by conventional techniques. Combined cluster and coverage analysis of the mate pair data allowed precise breakpoint detection and further refinement of previously identified balanced and (complex) unbalanced aberrations, pinpointing the causal gene for some patients. We conclude that mate pair sequencing is a powerful technology that can provide rapid and unequivocal characterization of unbalanced and balanced SVs in patient genomes and can be essential for the clinical interpretation of some SVs.