Tom van den Bergh
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tom van den Bergh.
Biotechnology Advances | 2015
Fabian Steffen-Munsberg; Clare Vickers; Hannes Kohls; Henrik Land; Hendrik Mallin; Alberto Nobili; Lilly Skalden; Tom van den Bergh; Henk-Jan Joosten; Per Berglund; Matthias Höhne; Uwe T. Bornscheuer
In this review we analyse structure/sequence-function relationships for the superfamily of PLP-dependent enzymes with special emphasis on class III transaminases. Amine transaminases are highly important for applications in biocatalysis in the synthesis of chiral amines. In addition, other enzyme activities such as racemases or decarboxylases are also discussed. The substrate scope and the ability to accept chemically different types of substrates are shown to be reflected in conserved patterns of amino acids around the active site. These findings are condensed in a sequence-function matrix, which facilitates annotation and identification of biocatalytically relevant enzymes and protein engineering thereof.
Human Mutation | 2010
Remko Kuipers; Tom van den Bergh; Henk-Jan Joosten; Ronald H. Lekanne Deprez; Marcel Mannens; Peter J. Schaap
Genetic disorders are often caused by nonsynonymous nucleotide changes in one or more genes associated with the disease. Specific amino acid changes, however, can lead to large variability of phenotypic expression. For many genetic disorders this results in an increasing amount of publications describing phenotype‐associated mutations in disorder‐related genes. Keeping up with this stream of publications is essential for molecular diagnostics and translational research purposes but often impossible due to time constraints: there are simply too many articles to read. To help solve this problem, we have created Mutator, an automated method to extract mutations from full‐text articles. Extracted mutations are crossreferenced to sequence data and a scoring method is applied to distinguish false‐positives. To analyze stored and new mutation data for their (potential) effect we have developed Validator, a Web‐based tool specifically designed for DNA diagnostics. Fabry disease, a monogenetic gene disorder of the GLA gene, was used as a test case. A structure‐based sequence alignment of the alpha‐amylase superfamily was used to validate results. We have compared our data with existing Fabry mutation data sets obtained from the HGMD and Swiss‐Prot databases. Compared to these data sets, Mutator extracted 30% additional mutations from the literature. Hum Mutat 31:1026–1032, 2010.
ChemBioChem | 2015
Alberto Nobili; Yifeng Tao; Ioannis V. Pavlidis; Tom van den Bergh; Henk-Jan Joosten; Tianwei Tan; Uwe T. Bornscheuer
In order to improve the efficiency of directed evolution experiments, in silico multiple‐substrate clustering was combined with an analysis of the variability of natural enzymes within a protein superfamily. This was applied to a Pseudomonas fluorescens esterase (PFE I) targeting the enantioselective hydrolysis of 3‐phenylbutyric acid esters. Data reported in the literature for nine substrates were used for the clustering meta‐analysis of the docking conformations in wild‐type PFE I, and this highlighted a tryptophan residue (W28) as an interesting target. Exploration of the most frequently, naturally occurring amino acids at this position suggested that the reduced flexibility observed in the case of the W28F variant leads to enhancement of the enantioselectivity. This mutant was subsequently combined with mutations identified in a library based on analysis of a correlated mutation network. By interrogation of <80 variants a mutant with 15‐fold improved enantioselectivity was found.
Chemcatchem | 2016
Maika Genz; Okke Melse; Sandy Schmidt; Clare Vickers; Mark Dörr; Tom van den Bergh; Henk-Jan Joosten; Uwe T. Bornscheuer
Chiral amines are important building blocks, especially for the pharmaceutical industry. Although amine transaminases (ATAs) are versatile enzymes to synthesize chiral amines, the wildtype enzymes do not accept ketones with two large substituents next to the carbonyl functionality. Using bioinformatic tools to design a seven‐site mutant library followed by high‐throughput screening, we were able to identify variants of the enzyme from Vibrio fluvialis (VF‐ATA) with a widened binding pocket, as exemplified for a range of ketones. Three variants allowed the asymmetric synthesis of 2,2‐dimethyl‐1‐phenylpropan‐1‐amine—not accessible by any wildtype ATA described so far. The best variant containing four mutations (L56V, W57C, F85V, V153A) gave 100 % conversion of the ketone to yield the amine with an enantiomeric excess value >99 %, notably with preference for the (R)‐enantiomer. In silico modeling enabled the reconstruction of the substrate binding mode to the newly evolved pocket and, hence, allowed explanation of the experimental results.
International Journal of Molecular Sciences | 2015
Maika Genz; Clare Vickers; Tom van den Bergh; Henk-Jan Joosten; Mark Dörr; Matthias Höhne; Uwe T. Bornscheuer
To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5′-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions.
ChemBioChem | 2016
Andy Beier; Sven Bordewick; Maika Genz; Sandy Schmidt; Tom van den Bergh; Christin Peters; Henk-Jan Joosten; Uwe T. Bornscheuer
Baeyer–Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to esters or lactones by using molecular oxygen and a cofactor. Type I BVMOs display a strong preference for NADPH. However, for industrial purposes NADH is the preferred cofactor, as it is ten times cheaper and more stable. Thus, we created a variant of the cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMOAcineto); this used NADH 4200‐fold better than NADPH. By combining structure analysis, sequence alignment, and literature data, 21 residues in proximity of the cofactor were identified and targeted for mutagenesis. Two combinatorial variants bearing three or four mutations showed higher conversions of cyclohexanone with NADH (79 %) compared to NADPH (58 %) as well as specificity. The structural reasons for this switch in cofactor specificity of a type I BVMO are especially a hydrogen‐bond network coordinating the two hydroxy groups of NADH through direct interactions and bridging water molecules.
Biotechnology Advances | 2015
Stevie Van Overtveldt; Tom Verhaeghe; Henk-Jan Joosten; Tom van den Bergh; Koen Beerens; Tom Desmet
In recent years, carbohydrate epimerases have attracted a lot of attention as efficient biocatalysts that can convert abundant sugars (e.g.d-fructose) directly into rare counterparts (e.g.d-psicose). Despite increased research activities, no review about these enzymes has been published in more than a decade, meaning that their full potential is hard to appreciate. Here, we present an overview of all known carbohydrate epimerases based on a classification in structural families, which links every substrate specificity to a well-defined reaction mechanism. The mechanism can even be predicted for enzymes that have not yet been characterized or that lack structural information. In this review, the different families are discussed in detail, both structurally and mechanistically, with special reference to recent examples in the literature. Furthermore, the value of understanding the reaction mechanism will be illustrated by making the link to possible application and engineering targets.
Scientific Reports | 2017
Elisa Lanfranchi; Tea Pavkov-Keller; Eva-Maria Koehler; Matthias Diepold; Kerstin Steiner; Barbara Darnhofer; Jürgen Hartler; Tom van den Bergh; Henk-Jan Joosten; Mandana Gruber-Khadjawi; Gerhard G. Thallinger; Ruth Birner-Gruenberger; Karl Gruber; Margit Winkler; Anton Glieder
Homology and similarity based approaches are most widely used for the identification of new enzymes for biocatalysis. However, they are not suitable to find truly novel scaffolds with a desired function and this averts options and diversity. Hydroxynitrile lyases (HNLs) are an example of non-homologous isofunctional enzymes for the synthesis of chiral cyanohydrins. Due to their convergent evolution, finding new representatives is challenging. Here we show the discovery of unique HNL enzymes from the fern Davallia tyermannii by coalescence of transcriptomics, proteomics and enzymatic screening. It is the first protein with a Bet v1-like protein fold exhibiting HNL activity, and has a new catalytic center, as shown by protein crystallography. Biochemical properties of D. tyermannii HNLs open perspectives for the development of a complementary class of biocatalysts for the stereoselective synthesis of cyanohydrins. This work shows that systematic integration of -omics data facilitates discovery of enzymes with unpredictable sequences and helps to extend our knowledge about enzyme diversity.
PLOS ONE | 2017
Tom van den Bergh; Giorgio Tamo; Alberto Nobili; Yifeng Tao; Tianwei Tan; Uwe T. Bornscheuer; Remko Kuipers; Bas Vroling; René M. de Jong; Kalyanasundaram Subramanian; Peter J. Schaap; Tom Desmet; Bernd Nidetzky; Gert Vriend; Henk-Jan Joosten
CorNet is a web-based tool for the analysis of co-evolving residue positions in protein super-family sequence alignments. CorNet projects external information such as mutation data extracted from literature on interactively displayed groups of co-evolving residue positions to shed light on the functions associated with these groups and the residues in them. We used CorNet to analyse six enzyme super-families and found that groups of strongly co-evolving residues tend to consist of residues involved in a same function such as activity, specificity, co-factor binding, or enantioselectivity. This finding allows to assign a function to residues for which no data is available yet in the literature. A mutant library was designed to mutate residues observed in a group of co-evolving residues predicted to be involved in enantioselectivity, but for which no literature data is available yet. The resulting set of mutations indeed showed many instances of increased enantioselectivity.
Applied Microbiology and Biotechnology | 2017
Anders M. Knight; Alberto Nobili; Tom van den Bergh; Maika Genz; Henk-Jan Joosten; Dirk Albrecht; Katharina Riedel; Ioannis V. Pavlidis; Uwe T. Bornscheuer
Pyridoxal-5′-phosphate (PLP)-dependent enzymes are ubiquitous in nature and catalyze a variety of important metabolic reactions. The fold-type III PLP-dependent enzyme family is primarily comprised of decarboxylases and alanine racemases. In the development of a multiple structural alignment database (3DM) for the enzyme family, a large subset of 5666 uncharacterized proteins with high structural, but low sequence similarity to alanine racemase and decarboxylases was found. Compared to these two classes of enzymes, the protein sequences being the object of this study completely lack the C-terminal domain, which has been reported important for the formation of the dimer interface in other fold-type III enzymes. The 5666 sequences cluster around four protein templates, which also share little sequence identity to each other. In this work, these four template proteins were solubly expressed in Escherichia coli, purified, and their substrate profiles were evaluated by HPLC analysis for racemase activity using a broader range of amino acids. They were found active only against alanine or serine, where they exhibited Michaelis constants within the range of typical bacterial alanine racemases, but with significantly lower turnover numbers. As the already described racemases were proposed to be active and appeared to be monomers as judged from their crystal structures, we also investigated this aspect for the four new enzymes. Here, size exclusion chromatography indicated the presence of oligomeric states of the enzymes and a native-PAGE in-gel assay showed that the racemase activity was present only in an oligomeric state but not as monomer. This suggests the likelihood of a different behavior of these enzymes in solution compared to the one observed in crystalline form.