Tomas Landelius
Swedish Meteorological and Hydrological Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomas Landelius.
Journal of Geophysical Research | 2000
Weine Josefsson; Tomas Landelius
Ten years of measurements of UV irradiance, monitored by the Robertson-Berger (RB) meter in Norrkoping, 58.58°N, 16.15°E, Sweden, have been combined with concurrent synoptic cloud observations, measurements of sunshine duration, and global radiation to establish the relative influence of clouds on UV irradiance. It is shown that the cloud effect for UV wavelengths is less than for the whole solar spectrum (global radiation). Relations retrieved for global radiation may be used by correcting for the differences. High-level clouds are more transparent than low- and medium-level clouds. As expected, it was found that precipitating clouds in general are more opaque than nonprecipitating clouds. If there is any solar elevation dependency in the effect of clouds, it is small. Using only total cloud amount as parameter to model, the cloud effect on UV irradiance will give a substantial uncertainty, which can be decreased considerably using cloud type and/or information on precipitation conditions. It has also been shown that sunshine duration can be used in a similar way as cloud cover.
Global Biogeochemical Cycles | 2014
Birgit Koehler; Tomas Landelius; Gesa A. Weyhenmeyer; Nanako Machida; Lars J. Tranvik
The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet, the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical mineralization of dissolved organic carbon (DOC), rather than by microbial respiration during DOC decomposition. Also, it is unknown on larger spatial and temporal scales how photochemical mineralization compares to other C fluxes in the inland water C cycle. We combined field and laboratory data with atmospheric radiative transfer modeling to parameterize a photochemical rate model for each day of the year 2009, for 1086 lakes situated between latitudes from 55 to 69°N in Sweden. The sunlight-induced production of dissolved inorganic carbon (DIC) averaged 3.8 ± 0.04 g C m-2 yr-1, which is a flux comparable in size to the organic carbon burial in the lake sediments. Countrywide, 151 ± 1 kt C yr-1 was produced by photochemical mineralization, corresponding to about 12% of total annual mean CO2 emissions from Swedish lakes. With a median depth of 3.2 m, the lakes were generally deep enough that incoming, photochemically active photons were absorbed in the water column. This resulted in a linear positive relationship between DIC photoproduction and the incoming photon flux, which correspond to the absorbed photons. Therefore, the slope of the regression line represents the wavelength- and depth-integrated apparent quantum yield of DIC photoproduction. We used this relationship to obtain a first estimate of DIC photoproduction in lakes and reservoirs worldwide. Global DIC photoproduction amounted to 13 and 35 Mt C yr-1 under overcast and clear sky, respectively. Consequently, these directly sunlight-induced CO2 emissions contribute up to about one tenth to the global CO2 emissions from lakes and reservoirs, corroborating that microbial respiration contributes a substantially larger share than formerly thought, and generate annual C fluxes similar in magnitude to the C burial in natural lake sediments worldwide.
Journal of Geophysical Research | 2000
Tomas Landelius; Weine Josefsson
Irradiance measurements on a horizontal surface often deviate from theory where the irradiance is supposed to be proportional to the cosine of the angle of incidence. This discrepancy is known as the cosine error. In this paper, three different methods for cosine error correction are investigated. The simplest method is based on the assumption of an isotropic sky radiance distribution, regardless of sky conditions, and the irradiance is treated as a single component. In the second method the irradiance is divided into one direct solar and one diffuse sky component, where the latter is assumed to have an isotropic distribution. Finally, a third method also divides the irradiance into two components but under the assumption of an anisotropic sky radiance distribution. Irradiances under general sky conditions are found by interpolation between clear and overcast cases on the basis of sunshine duration or cloud cover. The three methods are applied to data from a Robertson-Berger sunburning meter located in Norrkoping, Sweden. Both methods, where the irradiance is divided into two components, produce acceptable and similar results, while the isotropic one-component method does not.
Journal of Atmospheric and Oceanic Technology | 2004
Günther Haase; Tomas Landelius
A novel dealiasing algorithm for Doppler radar velocity data has been developed at the Swedish Meteorological and Hydrological Institute (SMHI). Unlike most other methods, it does not need independent wind information from other instruments (e.g., nearby radiosonde or wind profiler) or numerical weather prediction (NWP) models. The innovation of the new technique is that it maps the measurements onto the surface of a torus. Dealiased volume radar data can be used in variational assimilation schemes for NWP models through the generation of so-called superobservations. Their use is expected to improve with the introduction of the proposed dealiasing method.
Tellus A | 2016
Cornel Soci; Eric Bazile; François Besson; Tomas Landelius
In this article, we describe the design and the validation of the Mescan precipitation analysis system developed for climatological purposes under the EURO4M project. The system is based on an optimal interpolation algorithm using the 24-h aggregated gauge measurements from the surface network. The background fields are the total accumulated precipitation forecasts at different resolutions from the ALADIN or HIRLAM mesoscale models, downscaled to 5.5 km grid spacing, chosen to match the time period of the climatological gauge reports. The validation of the Mescan system is carried out over the French territory employing various metrics and by providing forcing to a hydrological model to produce river discharges. The investigations have shown that the precipitation analyses have almost the same quality as the well-validated SAFRAN analysis system. In addition, the analysis of the precipitation variance spectra computed on the same horizontal domain has indicated that at short wavelengths the downscaled fields have significantly lower variability than a field produced by time integrating a forecast model. The Mescan precipitation analysis system has successfully been used to produce 24-h total accumulated precipitation re-analyses on a 5.5 km grid over Europe for the period 2007–2010.
Water Research | 2018
Birgit Koehler; Francesco Barsotti; Marco Minella; Tomas Landelius; Claudio Minero; Lars J. Tranvik; Davide Vione
Lake water constituents, such as chromophoric dissolved organic matter (CDOM) and nitrate, absorb sunlight which induces an array of photochemical reactions. Although these reactions are a substantial driver of pollutant degradation in lakes they are insufficiently understood, in particular on large scales. Here, we provide for the first time comprehensive photochemical maps covering a large geographic region. Using photochemical kinetics modeling for 1048 lakes across Sweden we simulated the steady-state concentrations of four photoreactive transient species, which are continuously produced and consumed in sunlit lake waters. We then simulated the transient-induced photochemical transformation of organic pollutants, to gain insight into the relevance of the different photoreaction pathways. We found that boreal lakes were often unfavorable environments for photoreactions mediated by hydroxyl radicals (OH) and carbonate radical anions (CO3-), while photoreactions mediated by CDOM triplet states (3CDOM*) and, to a lesser extent, singlet oxygen (1O2) were the most prevalent. These conditions promote the photodegradation of phenols, which are used as plastic, medical drug and herbicide precursors. When CDOM concentrations increase, as is currently commonly the case in boreal areas such as Sweden, 3CDOM* will also increase, promoting its importance in photochemical pathways even more.
Ultraviolet Ground- and Space-based Measurements, Models, and Effects III | 2003
Tomas Landelius; Weine Josefsson; Thomas Carlund
At the Swedish Meteorological and Hydrological Institute (SMHI) an operational radiation model system has been set up. It produces hourly fields of global-, photosynthetically active- and CIE weighted UV-radiation with a resolution of about 22 x 22 km for a geographic area covering Scandinavia and the run off region of the Baltic sea. This paper presents the model system and its data sources together with some validation results. The model output is available on the Internet page http://www.smhi.se/strang.
SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems | 2017
Martín Gastón; Carlos M. Fernández-Peruchena; Heiner Körnich; Tomas Landelius
The present work describes the first approach of a new procedure to forecast Direct Normal Irradiance (DNI): the #hashtdim that treats to combine ground information and Numerical Weather Predictions. The system is centered in generate predictions for the very short time. It combines the outputs from the Numerical Weather Prediction Model HARMONIE with an adaptive methodology based on Machine Learning. The DNI predictions are generated with 15-minute and hourly temporal resolutions and presents 3-hourly updates. Each update offers forecasts to the next 12 hours, the first nine hours are generated with 15-minute temporal resolution meanwhile the last three hours present hourly temporal resolution. The system is proved over a Spanish emplacement with BSRN operative station in south of Spain (PSA station). The #hashtdim has been implemented in the framework of the Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies (DNICast) project, under the European Union...
Journal of Applied Meteorology | 2003
Thomas Carlund; Tomas Landelius; Weine Josefsson
Quarterly Journal of the Royal Meteorological Society | 2016
Per Dahlgren; Tomas Landelius; Per Kållberg; Stefan Gollvik