Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomas Linder is active.

Publication


Featured researches published by Tomas Linder.


Current Genetics | 2005

A family of putative transcription termination factors shared amongst metazoans and plants

Tomas Linder; Chan Bae Park; Jordi Asin-Cayuela; Mina Pellegrini; Nils-Göran Larsson; Maria Falkenberg; Tore Samuelsson; Claes M. Gustafsson

The human mitochondrial transcription termination factor (mTERF) is involved in the regulation of transcription of the mitochondrial genome. Similarity searches and phylogenetic analysis demonstrate that mTERF is a member of large and complex protein family (the MTERF family) shared amongst metazoans and plants. Interestingly, we identify three novel MTERF genes in vertebrates, which all encode proteins with predicted mitochondrial localization. Members of the MTERF family have so far not been detected in fungi, supporting the notion that mitochondrial transcription regulation may have evolved separately in yeast and animal cells.


Journal of Biological Chemistry | 2003

Mediator influences Schizosaccharomyces pombe RNA polymerase II-dependent transcription in vitro.

Henrik Spåhr; Olga Khorosjutina; Vera Baraznenok; Tomas Linder; Camilla O. Samuelsen; Damien Hermand; Tomi P. Mäkelä; Steen Holmberg; Claes M. Gustafsson

The fission yeast Schizosaccharomyces pombe has proved an important model system for cross-species comparative studies of many fundamental processes in the eukaryotic cell, such as cell cycle control and DNA replication. The RNA polymerase II transcription machinery is, however, still relatively poorly understood in S. pombe, partially due to the absence of a reconstituted in vitro transcription system. We have now purified S. pombe RNA polymerase II and its general initiation factors TFIIB, TFIIF, TFIIE, and TFIIH to near homogeneity. These factors enable RNA polymerase II to initiate transcription from the S. pombe alcohol dehydrogenase promoter (adh1p) when combined with Saccharomyces cerevisiae TATA-binding protein. We use our reconstituted system to examine effects of Mediator on basal transcription in vitro. S. pombe Mediator exists in two distinct forms, a free form, which contains the spSrb8, spTrap240, spSrb10, and spSrb11 subunits, and a smaller form, which lacks these four subunits and associates with RNA polymerase II to form a holoenzyme. We find that spSrb8/spTrap240/spSrb10/spSrb11 containing Mediator repress basal transcription, whereas Mediator lacking these subunits has a stimulatory effect on transcription. Our findings thus demonstrate that the spSrb8/spTrap240/spSrb10/spSrb11 subcomplex governs the ability of Mediator to stimulate or repress basal transcription in vitro.


Nucleic Acids Research | 2008

Two conserved modules of Schizosaccharomyces pombe Mediator regulate distinct cellular pathways

Tomas Linder; Nina Rasmussen; Camilla O. Samuelsen; Emmanouella Chatzidaki; Vera Baraznenok; Jenny Beve; Peter Henriksen; Claes M. Gustafsson; Steen Holmberg

Mediator is an evolutionary conserved coregulator complex required for transcription of almost all RNA polymerase II-dependent genes. The Schizosaccharomyces pombe Mediator consists of two dissociable components—a core complex organized into a head and middle domain as well as the Cdk8 regulatory subcomplex. In this work we describe a functional characterization of the S. pombe Mediator. We report the identification of the S. pombe Med20 head subunit and the isolation of ts alleles of the core head subunit encoding med17+. Biochemical analysis of med8ts, med17ts, Δmed18, Δmed20 and Δmed27 alleles revealed a stepwise head domain molecular architecture. Phenotypical analysis of Cdk8 and head module alleles including expression profiling classified the Mediator mutant alleles into one of two groups. Cdk8 module mutants flocculate due to overexpression of adhesive cell-surface proteins. Head domain-associated mutants display a hyphal growth phenotype due to defective expression of factors required for cell separation regulated by transcription factor Ace2. Comparison with Saccharomyces cerevisiae Mediator expression data reveals that these functionally distinct modules are conserved between S. pombe and S. cerevisiae.


Structure | 2009

Cryo-EM Reveals Promoter DNA Binding and Conformational Flexibility of the General Transcription Factor TFIID

Hans Elmlund; Vera Baraznenok; Tomas Linder; Zsolt Szilagyi; Reza Rofougaran; Anders Hofer; Hans Hebert; Martin Lindahl; Claes M. Gustafsson

The general transcription factor IID (TFIID) is required for initiation of RNA polymerase II-dependent transcription at many eukaryotic promoters. TFIID comprises the TATA-binding protein (TBP) and several conserved TBP-associated factors (TAFs). Recognition of the core promoter by TFIID assists assembly of the preinitiation complex. Using cryo-electron microscopy in combination with methods for ab initio single-particle reconstruction and heterogeneity analysis, we have produced density maps of two conformational states of Schizosaccharomyces pombe TFIID, containing and lacking TBP. We report that TBP-binding is coupled to a massive histone-fold domain rearrangement. Moreover, docking of the TBP-TAF1(N-terminus) atomic structure to the TFIID map and reconstruction of a TAF-promoter DNA complex helps to account for TAF-dependent regulation of promoter-TBP and promoter-TAF interactions.


Microbiology | 2014

CMO1 encodes a putative choline monooxygenase and is required for the utilization of choline as the sole nitrogen source in the yeast Scheffersomyces stipitis (syn. Pichia stipitis).

Tomas Linder

Sixteen yeasts with sequenced genomes belonging to the ascomycete subphyla Saccharomycotina and Taphrinomycotina were assayed for their ability to utilize a variety of primary, secondary, tertiary and quartenary aliphatic amines as nitrogen sources. The results support a previously proposed pathway of quaternary amine catabolism whereby glycine betaine is first converted into choline, which is then cleaved to release trimethylamine, followed by stepwise demethylation of trimethylamine to release free ammonia. There were only a few instances of utilization of N-methylated glycine species (sarcosine and N,N-dimethylglycine), which suggests that this pathway is not intact in any of the species tested. The ability to utilize choline as a sole nitrogen source correlated strongly with the presence of a putative Rieske non-haem iron protein homologous to bacterial ring-hydroxylating oxygenases and plant choline monooxygenases. Deletion of the gene encoding the Rieske non-haem iron protein in the yeast Scheffersomyces stipitis abolished its ability to utilize choline as the sole nitrogen source, but did not affect its ability to use methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, ethanolamine or glycine as nitrogen sources. The gene was named CMO1 for putative choline monooxygenase 1. A bioinformatic survey of eukaryotic genomes showed that CMO1 homologues are found throughout the eukaryotic domain.


PLOS ONE | 2014

Silencing Motifs in the Clr2 Protein from Fission Yeast, Schizosaccharomyces pombe

Daniel Steinhauf; Alejandro Rodriguez; Dimitrios Vlachakis; Gordon Virgo; Vladimir Maksimov; Carolina Kristell; Ida Olsson; Tomas Linder; Sophia Kossida; Erik Bongcam-Rudloff; Pernilla Bjerling

The fission yeast, Schizosaccharomyces pombe, is a well-established model for heterochromatin formation, but the exact sequence of events for initiation remains to be elucidated. The essential factors involved include RNA transcribed from repeated sequences together with the methyltransferase Clr4. In addition, histone deacetylases, like Clr3, found in the SHREC complex are also necessary for transcriptional silencing. Clr2 is another crucial factor required for heterochromatin formation found in the SHREC complex. The function of Clr2 has been difficult to establish due to the lack of conserved domains or homology to proteins of known molecular function. Using a bioinformatics approach, three conserved motifs in Clr2 were identified, which contained amino acids important for transcriptional repression. Analysis of clr2 mutant strains revealed a major role for Clr2 in mating-type and rDNA silencing, and weaker effects on centromeric silencing. The effect on mating-type silencing showed variegation in several of the strains with mutated versions of Clr2 indicating an establishment or maintenance defect. Moreover, the critical amino acids in Clr2 were also necessary for transcriptional repression in a minimal system, by the tethering of Clr4 upstream of a reporter gene, inserted into the euchromatic part of the genome. Finally, in silico modeling suggested that the mutations in Clr2 cause disruption of secondary structures in the Clr2 protein. Identification of these critical amino acids in the protein provides a useful tool to explore the molecular mechanism behind the role of Clr2 in heterochromatin formation.


Journal of Chemical Ecology | 2017

Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival

Alexander Piper; Kevin Farnier; Tomas Linder; Robert Speight; John Paul Cunningham

Yeast-insect interactions have been well characterized in drosophilid flies, but not in tephritid fruit flies, which include many highly polyphagous pest species that attack ripening fruits. Using the Queensland fruit fly (Bactrocera tryoni) as our model tephritid species, we identified yeast species present in the gut of wild-collected larvae and found two genera, Hanseniaspora and Pichia, were the dominant isolates. In behavioural trials using adult female B. tryoni, a fruit-agar substrate inoculated with Pichia kluyveri resulted in odour emissions that increased the attraction of flies, whereas inoculation with Hanseniaspora uvarum, produced odours that strongly deterred flies, and both yeasts led to decreased oviposition. Larval development trials showed that the fruit-agar substrate inoculated with the ‘deterrent odour’ yeast species, H. uvarum, resulted in significantly faster larval development and a greater number of adult flies, compared to a substrate inoculated with the ‘attractive odour’ yeast species, P. kluyveri, and a yeast free control substrate. GC-MS analysis of volatiles emitted by H. uvarum and P. kluyveri inoculated substrates revealed significant quantitative differences in ethyl-, isoamyl-, isobutyl-, and phenethyl- acetates, which may be responsible for the yeast-specific olfactory responses of adult flies. We discuss how our seemingly counterintuitive finding that female B. tryoni flies avoid a beneficial yeast fits well with our understanding of female choice of oviposition sites, and how the contrasting behavioural effects of H. uvarum and P. kluyveri raises interesting questions regarding the role of yeast-specific volatiles as cues to insect vectors. A better understanding of yeast-tephritid interactions could assist in the future management of tephritid fruit fly pests through the formulation of new “attract and kill” lures, and the development of probiotics for mass rearing of insects in sterile insect control programs.


Current Microbiology | 2017

ATP Sulfurylase is Essential for the Utilization of Sulfamate as a Sulfur Source in the Yeast Komagataella pastoris (syn. Pichia pastoris)

Tomas Linder

The methylotrophic yeast Komagataella pastoris (syn. Pichia pastoris) is one of the few known yeasts that can utilize sulfamate (


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2016

Utilisation of aromatic organosulfur compounds as sulfur sources by Lipomyces starkeyi CBS 1807

Tomas Linder


World Journal of Microbiology & Biotechnology | 2018

Assimilation of alternative sulfur sources in fungi

Tomas Linder

{\text{NH}}_{2} {\text{SO}}_{3}^{ - }

Collaboration


Dive into the Tomas Linder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steen Holmberg

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Hebert

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nina Rasmussen

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge