Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vera Baraznenok is active.

Publication


Featured researches published by Vera Baraznenok.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II

Hans Elmlund; Vera Baraznenok; Martin Lindahl; Camilla O. Samuelsen; Philip J.B. Koeck; Steen Holmberg; Hans Hebert; Claes M. Gustafsson

CDK8 (cyclin-dependent kinase 8), along with CycC, Med12, and Med13, form a repressive module (the Cdk8 module) that prevents RNA polymerase II (pol II) interactions with Mediator. Here, we report that the ability of the Cdk8 module to prevent pol II interactions is independent of the Cdk8-dependent kinase activity. We use electron microscopy and single-particle reconstruction to demonstrate that the Cdk8 module forms a distinct structural entity that binds to the head and middle region of Mediator, thereby sterically blocking interactions with pol II.


Proceedings of the National Academy of Sciences of the United States of America | 2003

TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution

Camilla O. Samuelsen; Vera Baraznenok; Olga Khorosjutina; Henrik Spåhr; Thomas Kieselbach; Steen Holmberg; Claes M. Gustafsson

In Saccharomyces cerevisiae Mediator, a subgroup of proteins (Srb8, Srb9, Srb10, and Srb11) form a module, which is involved in negative regulation of transcription. Homologues of Srb10 and Srb11 are found in some mammalian Mediator preparations, whereas no clear homologues have been reported for Srb8 and Srb9. Here, we identify a TRAP240/ARC250 homologue in Schizosaccharomyces pombe and demonstrate that this protein, spTrap240, is stably associated with a larger form of Mediator, which also contains conserved homologues of Srb8, Srb10, and Srb11. We find that spTrap240 and Sch. pombe Srb8 (spSrb8) regulate the same distinct subset of genes and have indistinguishable phenotypic characteristics. Importantly, Mediator containing the spSrb8/spTrap240/spSrb10/spSrb11 subunits is isolated only in free form, devoid of RNA polymerase II. In contrast, Mediator lacking this module associates with the polymerase. Our findings provide experimental evidence for recent suggestions that TRAP230/ARC240 and TRAP240/ARC250 may indeed be the Srb8 and Srb9 homologues of mammalian Mediator. Apparently Srb8/TRAP230/ARC240, Srb9/TRAP240/ARC250, Srb10, and Srb11 constitute a conserved Mediator submodule, which is involved in negative regulation of transcription in all eukaryotes.


Journal of Biological Chemistry | 2014

Cathepsin S Causes Inflammatory Pain via Biased Agonism of PAR2 and TRPV4

Peishen Zhao; TinaMarie Lieu; Nicholas Barlow; Matthew Metcalf; Nicholas A. Veldhuis; Dane D. Jensen; Martina Kocan; Silvia Sostegni; Silke Haerteis; Vera Baraznenok; Ian R. Henderson; Erik Lindström; Raquel Guerrero-Alba; Eduardo Valdez-Morales; Wolfgang Liedtke; Peter McIntyre; Stephen Vanner; Christoph Korbmacher; Nigel W. Bunnett

Background: Proteases trigger inflammation and pain by cleaving protease-activated receptors (PARs) at defined sites. Results: Cathepsin S (Cat-S) cleaved PAR2 at a unique site E56↓T57, leading to Gαs-mediated cAMP accumulation and TRPV4-dependent inflammation and pain. Conclusion: Cat-S is a biased agonist of PAR2- and TRPV4-dependent inflammation and pain. Significance: PARs integrate responses to diverse proteases. Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R36↓S37 and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E56↓T57, which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca2+, activate ERK1/2, recruit β-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain.


Angewandte Chemie | 2010

Induced-Fit Binding of the Macrocyclic Noncovalent Inhibitor TMC435 to its HCV NS3/NS4A Protease Target

Maxwell D. Cummings; Jimmy Lindberg; Tse-I Lin; Herman de Kock; Oliver Lenz; Elisabet Lilja; Sara Felländer; Vera Baraznenok; Susanne Nyström; Magnus Nilsson; Lotta Vrang; Michael Edlund; Åsa Rosenquist; Bertil Samuelsson; Pierre Jean-Marie Bernard Raboisson; Kenneth Simmen

The NS3 protein of hepatitis C virus (HCV), together with the NS4A peptide co-factor, comprises 685 residues and possesses domain-specific RNA helicase and serine protease activities. NS3/NS4A protease activity is essential to the HCV life cycle. Small-molecule inhibitors of NS3/NS4A protease have been widely explored and are typically grouped into two classes: linear peptidomimetics with a ketoamide functionality that reacts with the catalytic Ser to form a reversible enzyme–inhibitor adduct, and noncovalent peptidomimetics containing a macrocycle (e.g. Figure 1); macrocyclic ketoamide inhibitors have also been reported. Macrocycles, underrepresented in synthetic drugs, are helpful in improving the druglike character of molecules. TMC435 (1; Figure 1), a macrocyclic noncovalent inhibitor of NS3/NS4A protease with subnanomolar Ki values for genotype 1a and 1b NS3/ NS4A proteases, 11] was discovered by optimizing an earlier NS3/NS4A protease inhibitor, BILN-2061 (2 ; Figure 1). Key steps in the progression from 2 to 1 include reduction of macrocycle size, truncation of the P4 (P3 capping) group, conversion of the carboxylate “head group” to an acylsulfonamide, replacement of the P2 proline pyrrolidine with a cyclopentyl ring, and optimization of the substituted quinoline-thiazole ring system (Figure 1). 14–16] Despite exceeding three of four Lipinski criteria, 1 shows excellent pharmacokinetics in humans. We have determined the crystal structure of 1 bound to its NS3/NS4A protease target from the BK strain of genotype 1b HCV at a resolution of 2.4 (Figure 2; see Table S1 and Figure S1 in the Supporting Information). The threedimensional structure of the NS3 protease domain in complex with a truncated version of the NS4A cofactor was first reported in 1996, and that of an engineered single-chain NS3/NS4A protease–helicase construct in 1999. Currently there are multiple covalent NS3/NS4A protease–inhibitor complexes accessible at the PDB. This structure is the first noncovalent NS3/NS4A protease–inhibitor complex to be deposited at the PDB. Additionally, the new structure shows that the large P2 substituent of 1 induces an extended S2 subsite to accommodate this group; none of the previously available complex structures share this feature. We analyze the observed induced-fit binding of 1 to HCV NS3/NS4A protease, discuss key in vitro resistance mutations in the context of the complex, and disclose the new crystal structure for public analysis. The structure of the NS3/NS4A–1 complex shows the expected trypsin-like fold for the enzyme, with the inhibitor bound at the active site, spanning the S3–S1’ subsites (Figure 2; see Figure S1 in the Supporting Information). Unlike many other macrocyclic drugs that can be divided into functional (binding) and modulator (nonbinding) domains, essentially all of 1 is involved in binding to its target site (Figure 2). Two canonical substrate-like intermolecular hydrogen bonds are observed: the P1–P2 backbone amide N contacts Arg155:O, and the carbonyl O of the P2–P3 amide Figure 1. Macrocyclic (1, 2) and ketoamide (3) inhibitors of HCV NS3/ NS4A protease. Substrate positions from NS3/NS4A protease complex structures are indicated for 1 and 3.


Journal of Biological Chemistry | 2003

Mediator influences Schizosaccharomyces pombe RNA polymerase II-dependent transcription in vitro.

Henrik Spåhr; Olga Khorosjutina; Vera Baraznenok; Tomas Linder; Camilla O. Samuelsen; Damien Hermand; Tomi P. Mäkelä; Steen Holmberg; Claes M. Gustafsson

The fission yeast Schizosaccharomyces pombe has proved an important model system for cross-species comparative studies of many fundamental processes in the eukaryotic cell, such as cell cycle control and DNA replication. The RNA polymerase II transcription machinery is, however, still relatively poorly understood in S. pombe, partially due to the absence of a reconstituted in vitro transcription system. We have now purified S. pombe RNA polymerase II and its general initiation factors TFIIB, TFIIF, TFIIE, and TFIIH to near homogeneity. These factors enable RNA polymerase II to initiate transcription from the S. pombe alcohol dehydrogenase promoter (adh1p) when combined with Saccharomyces cerevisiae TATA-binding protein. We use our reconstituted system to examine effects of Mediator on basal transcription in vitro. S. pombe Mediator exists in two distinct forms, a free form, which contains the spSrb8, spTrap240, spSrb10, and spSrb11 subunits, and a smaller form, which lacks these four subunits and associates with RNA polymerase II to form a holoenzyme. We find that spSrb8/spTrap240/spSrb10/spSrb11 containing Mediator repress basal transcription, whereas Mediator lacking these subunits has a stimulatory effect on transcription. Our findings thus demonstrate that the spSrb8/spTrap240/spSrb10/spSrb11 subcomplex governs the ability of Mediator to stimulate or repress basal transcription in vitro.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Analysis of Schizosaccharomyces pombe Mediator reveals a set of essential subunits conserved between yeast and metazoan cells

Henrik Spåhr; Camilla O. Samuelsen; Vera Baraznenok; Isabelle Ernest; Danny Huylebroeck; Jacques E. Remacle; Tore Samuelsson; Thomas Kieselbach; Steen Holmberg; Claes M. Gustafsson

With the identification of eight new polypeptides, we here complete the subunit characterization of the Schizosaccharomyces pombe RNA polymerase II holoenzyme. The complex contains homologs to all 10 essential gene products present in the Saccharomyces cerevisiae Mediator, but lacks clear homologs to any of the 10 S. cerevisiae components encoded by nonessential genes. S. pombe Mediator instead contains three unique components (Pmc2, -3, and -6), which lack homologs in other cell types. Presently, pmc2+ and pmc3+ have been shown to be nonessential genes. The data suggest that S. pombe and S. cerevisiae share an essential protein module, which associates with nonessential speciesspecific subunits. In support of this view, sequence analysis of the conserved yeast Mediator components Med4 and Med8 reveals sequence homology to the metazoan Mediator components Trap36 and Arc32. Therefore, 8 of 10 essential genes conserved between S. pombe and S. cerevisiae also have a metazoan homolog, indicating that an evolutionary conserved Mediator core is present in all eukaryotic cells. Our data suggest a closer functional relationship between yeast and metazoan Mediator than previously anticipated.


Biochemistry | 2010

Effect of the protonation state of the titratable residues on the inhibitor affinity to BACE-1.

José L. Domínguez; Tony Christopeit; M. Carmen Villaverde; Thomas Gossas; José M. Otero; Susanne Nyström; Vera Baraznenok; Erik Lindström; U. Helena Danielson; Fredy Sussman

BACE-1 is one of the aspartic proteases involved in the cleavage of beta amyloid peptide, an initial step in the formation of amyloid plaques whose toxicity induces neuron death in Alzheimers disease patients. One of the central issues in the search of novel BACE-1 inhibitors is the optimum pH for the binding of inhibitors to the enzyme. It is known that the enzyme has optimal catalytic activity at acidic pH, while cell active inhibitors may bind optimally at higher pH. In this work we determine the effect of the pH on the affinities of a set of inhibitors, with a variety of chemical motifs, for the ectodomain region of BACE-1 by a surface plasmon resonance (SPR) biosensor based assay. In order to understand the molecular interactions that underlie the diverse optimum pH for the binding of the various inhibitors as observed experimentally, we have calculated the titration curves for a set of BACE-1 ligand complexes. The results indicate that the pK(a) values of the titratable residues of the protein depend on the nature of the ligand involved, in disagreement with previous work. The enzyme-inhibitor structures with the resulting protonation states at pH values 4.5 and 7.4 served as the starting point for the prediction of the pH-dependent binding ranking. Our calculations reproduced the entire affinity ranking observed upon pH increase and most of the binding trends among inhibitors, especially at low pH. Finally, our cell-based assays indicate a possible correlation between high inhibitor affinity at both acidic and neutral pH values, with optimal cell response, a result that may open new venues for the search of potent BACE-1 inhibitors that are active at the cellular level.


Pflügers Archiv: European Journal of Physiology | 2012

Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S

Silke Haerteis; Matteus Krappitz; Marko Bertog; Annabel Krappitz; Vera Baraznenok; Ian Henderson; Erik Lindström; Jane E. Murphy; Nigel W. Bunnett; Christoph Korbmacher

Proteolytic processing of the amiloride-sensitive epithelial sodium channel (ENaC) by serine proteases is known to be important for channel activation. Inappropriate ENaC activation by proteases may contribute to the pathophysiology of cystic fibrosis and could be involved in sodium retention and the pathogenesis of arterial hypertension in the context of renal disease. We hypothesized that in addition to serine proteases, cathepsin proteases may activate ENaC. Cathepsin proteases belong to the group of cysteine proteases and play a pathophysiological role in inflammatory diseases. Under pathophysiological conditions, cathepsin-S (Cat-S) may reach ENaC in the apical membrane of epithelial cells. The aim of this study was to investigate the effect of purified Cat-S on human ENaC heterologously expressed in Xenopus laevis oocytes and on ENaC-mediated sodium transport in cultured M-1 mouse renal collecting duct cells. We demonstrated that Cat-S activates amiloride-sensitive whole-cell currents in ENaC-expressing oocytes. The stimulatory effect of Cat-S was preserved at pH 5. ENaC stimulation by Cat-S was associated with the appearance of a γENaC cleavage fragment at the plasma membrane indicating proteolytic channel activation. Mutating two valine residues (V182 and V193) in the critical region of γENaC prevented proteolytic activation of ENaC by Cat-S. Pre-incubation of the oocytes with the Cat-S inhibitor morpholinurea-leucine-homophenylalanine-vinylsulfone-phenyl (LHVS) prevented the stimulatory effect of Cat-S on ENaC. In contrast, LHVS had no effect on ENaC activation by the prototypical serine proteases trypsin and chymotrypsin. Cat-S also stimulated ENaC in differentiated renal epithelial cells. These findings demonstrate that the cysteine protease Cat-S can activate ENaC which may be relevant under pathophysiological conditions.


Nucleic Acids Research | 2008

Two conserved modules of Schizosaccharomyces pombe Mediator regulate distinct cellular pathways

Tomas Linder; Nina Rasmussen; Camilla O. Samuelsen; Emmanouella Chatzidaki; Vera Baraznenok; Jenny Beve; Peter Henriksen; Claes M. Gustafsson; Steen Holmberg

Mediator is an evolutionary conserved coregulator complex required for transcription of almost all RNA polymerase II-dependent genes. The Schizosaccharomyces pombe Mediator consists of two dissociable components—a core complex organized into a head and middle domain as well as the Cdk8 regulatory subcomplex. In this work we describe a functional characterization of the S. pombe Mediator. We report the identification of the S. pombe Med20 head subunit and the isolation of ts alleles of the core head subunit encoding med17+. Biochemical analysis of med8ts, med17ts, Δmed18, Δmed20 and Δmed27 alleles revealed a stepwise head domain molecular architecture. Phenotypical analysis of Cdk8 and head module alleles including expression profiling classified the Mediator mutant alleles into one of two groups. Cdk8 module mutants flocculate due to overexpression of adhesive cell-surface proteins. Head domain-associated mutants display a hyphal growth phenotype due to defective expression of factors required for cell separation regulated by transcription factor Ace2. Comparison with Saccharomyces cerevisiae Mediator expression data reveals that these functionally distinct modules are conserved between S. pombe and S. cerevisiae.


Structure | 2009

Cryo-EM Reveals Promoter DNA Binding and Conformational Flexibility of the General Transcription Factor TFIID

Hans Elmlund; Vera Baraznenok; Tomas Linder; Zsolt Szilagyi; Reza Rofougaran; Anders Hofer; Hans Hebert; Martin Lindahl; Claes M. Gustafsson

The general transcription factor IID (TFIID) is required for initiation of RNA polymerase II-dependent transcription at many eukaryotic promoters. TFIID comprises the TATA-binding protein (TBP) and several conserved TBP-associated factors (TAFs). Recognition of the core promoter by TFIID assists assembly of the preinitiation complex. Using cryo-electron microscopy in combination with methods for ab initio single-particle reconstruction and heterogeneity analysis, we have produced density maps of two conformational states of Schizosaccharomyces pombe TFIID, containing and lacking TBP. We report that TBP-binding is coupled to a massive histone-fold domain rearrangement. Moreover, docking of the TBP-TAF1(N-terminus) atomic structure to the TFIID map and reconstruction of a TAF-promoter DNA complex helps to account for TAF-dependent regulation of promoter-TBP and promoter-TAF interactions.

Collaboration


Dive into the Vera Baraznenok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steen Holmberg

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Linder

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge