Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomasz Kantyka is active.

Publication


Featured researches published by Tomasz Kantyka.


PLOS Pathogens | 2009

Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

Michal Potempa; Jan Potempa; Tomasz Kantyka; Ky-Anh Nguyen; Katarzyna Wawrzonek; Surya P. Manandhar; Katarzyna Popadiak; Kristian Riesbeck; Sigrun Eick; Anna M. Blom

Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A) resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the α-chain of C3—the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.


Journal of Biological Chemistry | 2010

Isolation of SPINK6 in Human Skin: SELECTIVE INHIBITOR OF KALLIKREIN-RELATED PEPTIDASES*

Ulf Meyer-Hoffert; Zhihong Wu; Tomasz Kantyka; Jan A. Fischer; Ties Latendorf; Britta Hansmann; Joachim Bartels; Yinghong He; Regine Gläser; Jens-Michael Schröder

Kallikrein-related peptidases (KLKs) play a central role in skin desquamation. They are tightly controlled by specific inhibitors, including the lymphoepithelial Kazal-type inhibitor (LEKTI) encoded by SPINK5 and LEKTI-2 encoded by SPINK9. Herein, we identify SPINK6 as a selective inhibitor of KLKs in the skin. Unlike LEKTI but similar to LEKTI-2, SPINK6 possesses only one typical Kazal domain. Its mRNA was detected to be expressed at low levels in several tissues and was induced during keratinocyte differentiation. Natural SPINK6 was purified from human plantar stratum corneum extracts. Immunohistochemical analyses revealed SPINK6 expression in the stratum granulosum of human skin at various anatomical localizations and in the skin appendages, including sebaceous glands and sweat glands. SPINK6 expression was decreased in lesions of atopic dermatitis. Using KLK5, KLK7, KLK8, KLK14, thrombin, trypsin, plasmin, matriptase, prostasin, mast cell chymase, cathepsin G, neutrophil elastase, and chymotrypsin, inhibition with recombinant SPINK6 was detected only for KLK5, KLK7, and KLK14, with apparent Ki values of 1.33, 1070, and 0.5 nm, respectively. SPINK6 inhibited desquamation of human plantar callus in an ex vivo model. Our findings suggest that SPINK6 plays a role in modulating the activity of KLKs in human skin. A selective inhibition of KLKs by SPINK6 might have therapeutic potential when KLK activity is elevated.


Journal of Innate Immunity | 2014

Staphylococcal proteases aid in evasion of the human complement system.

Monika Jusko; Jan Potempa; Tomasz Kantyka; Ewa Bielecka; Halie K. Miller; Magdalena Kalinska; Grzegorz Dubin; Peter Garred; Lindsey N. Shaw; Anna M. Blom

Staphylococcus aureus is an opportunistic pathogen that presents severe health care concerns due to the prevalence of multiple antibiotic-resistant strains. New treatment strategies are urgently needed, which requires an understanding of disease causation mechanisms. Complement is one of the first lines of defense against bacterial pathogens, and S. aureus expresses several specific complement inhibitors. The effect of extracellular proteases from this bacterium on complement, however, has been the subject of limited investigation, except for a recent report regarding cleavage of the C3 component by aureolysin (Aur). We demonstrate here that four major extracellular proteases of S. aureus are potent complement inhibitors. Incubation of human serum with the cysteine proteases staphopain A and staphopain B, the serine protease V8 and the metalloproteinase Aur resulted in a drastic decrease in the hemolytic activity of serum, whereas two staphylococcal serine proteases D and E, had no effect. These four proteases were found to inhibit all pathways of complement due to the efficient degradation of several crucial components. Furthermore, S. aureus mutants lacking proteolytic enzymes were found to be more efficiently killed in human blood. Taken together, the major proteases of S. aureus appear to be important for pathogen-mediated evasion of the human complement system.


Journal of Immunology | 2011

Regulation of Chemerin Chemoattractant and Antibacterial Activity by Human Cysteine Cathepsins

Paulina Kulig; Tomasz Kantyka; Brian A. Zabel; Magdalena Banaś; Agnieszka Chyra; Anna Stefanska; Hua Tu; Samantha J. Allen; Tracy M. Handel; Andrzej Kozik; Jan Potempa; Eugene C. Butcher; Joanna Cichy

Chemerin, a ligand for the G-protein coupled receptor chemokine-like receptor 1, requires C-terminal proteolytic processing to unleash its chemoattractant activity. Proteolytically processed chemerin selectively attracts specific subsets of immunoregulatory APCs, including chemokine-like receptor 1-positive immature plasmacytoid dendritic cells (pDC). Chemerin is predicted to belong to the structural cathelicidin/cystatin family of proteins composed of antibacterial polypeptide cathelicidins and inhibitors of cysteine proteinases (cystatins). We therefore hypothesized that chemerin may interact directly with cysteine proteases, and that it might also function as an antibacterial agent. In this article, we show that chemerin does not inhibit human cysteine proteases, but rather is a new substrate for cathepsin (cat) K and L. cat K- and L-cleaved chemerin triggered robust migration of human blood-derived pDC ex vivo. Furthermore, cat K- and L-truncated chemerin also displayed antibacterial activity against Enterobacteriaceae. Cathepsins may therefore contribute to host defense by activating chemerin to directly inhibit bacterial growth and to recruit pDC to sites of infection.


Biological Chemistry | 2009

Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages

Jan Smagur; Krzysztof Guzik; Małgorzata Bzowska; Mateusz Kuzak; Mirosław Zarębski; Tomasz Kantyka; Michał Walski; Barbara Gajkowska; Jan Potempa

Abstract Circulating neutrophils and monocytes constitute the first line of antibacterial defence, which is responsible for the phagocytosis and killing of microorganisms. Previously, we have described that the staphylococcal cysteine proteinase staphopain B (SspB) cleaves CD11b on peripheral blood phagocytes, inducing the rapid development of features of atypical cell death in protease-treated cells. Here, we report that exposure of phagocytes to SspB critically impairs their antibacterial functions. Specifically, SspB blocks phagocytosis of Staphylococcus aureus by both neutrophils and monocytes, represses their chemotactic activity and induces extensive, nonphlogistic clearance of SspB-treated cells by macrophages. The proteinase also cleaves CD31, a major repulsion (‘do not-eat-me’) signal, on the surface of neutrophils. We suggest that both proteolytic degradation of repulsion signals and induction of ‘eat-me’ signals on the surface of leukocytes are responsible for the observed intensive phagocytosis of SspB-treated neutrophils by human monocyte-derived macrophages. Collectively, this may lead to the depletion of functional neutrophils at the site of infection, thus facilitating staphylococcal colonisation and spreading.


Journal of Biological Chemistry | 2008

A New Autocatalytic Activation Mechanism for Cysteine Proteases Revealed by Prevotella intermedia Interpain A

Noemí Mallorquí-Fernández; Surya P. Manandhar; Goretti Mallorquí-Fernández; Isabel Usón; Katarzyna Wawrzonek; Tomasz Kantyka; Maria Solà; Ida B. Thøgersen; Jan J. Enghild; Jan Potempa; F. Xavier Gomis-Rüth

Prevotella intermedia is a major periodontopathogen contributing to human gingivitis and periodontitis. Such pathogens release proteases as virulence factors that cause deterrence of host defenses and tissue destruction. A new cysteine protease from the cysteine-histidine-dyad class, interpain A, was studied in its zymogenic and self-processed mature forms. The latter consists of a bivalved moiety made up by two subdomains. In the structure of a catalytic cysteine-to-alanine zymogen variant, the right subdomain interacts with an unusual prodomain, thus contributing to latency. Unlike the catalytic cysteine residue, already in its competent conformation in the zymogen, the catalytic histidine is swung out from its active conformation and trapped in a cage shaped by a backing helix, a zymogenic hairpin, and a latency flap in the zymogen. Dramatic rearrangement of up to 20Å of these elements triggered by a tryptophan switch occurs during activation and accounts for a new activation mechanism for proteolytic enzymes. These findings can be extrapolated to related potentially pathogenic cysteine proteases such as Streprococcus pyogenes SpeB and Porphyromonas gingivalis periodontain.


Infection and Immunity | 2013

Inactivation of Epidermal Growth Factor by Porphyromonas gingivalis as a Potential Mechanism for Periodontal Tissue Damage

Krzysztof Pyrc; Aleksandra Milewska; Tomasz Kantyka; Aneta Sroka; Katarzyna Maresz; Joanna Koziel; Ky-Anh Nguyen; Jan J. Enghild; Anders Dahl Knudsen; Jan Potempa

ABSTRACT Porphyromonas gingivalis is a Gram-negative bacterium associated with the development of periodontitis. The evolutionary success of this pathogen results directly from the presence of numerous virulence factors, including peptidylarginine deiminase (PPAD), an enzyme that converts arginine to citrulline in proteins and peptides. Such posttranslational modification is thought to affect the function of many different signaling molecules. Taking into account the importance of tissue remodeling and repair mechanisms for periodontal homeostasis, which are orchestrated by ligands of the epidermal growth factor receptor (EGFR), we investigated the ability of PPAD to distort cross talk between the epithelium and the epidermal growth factor (EGF) signaling pathway. We found that EGF preincubation with purified recombinant PPAD, or a wild-type strain of P. gingivalis, but not with a PPAD-deficient isogenic mutant, efficiently hindered the ability of the growth factor to stimulate epidermal cell proliferation and migration. In addition, PPAD abrogated EGFR-EGF interaction-dependent stimulation of expression of suppressor of cytokine signaling 3 and interferon regulatory factor 1. Biochemical analysis clearly showed that the PPAD-exerted effects on EGF activities were solely due to deimination of the C-terminal arginine. Interestingly, citrullination of two internal Arg residues with human endogenous peptidylarginine deiminases did not alter EFG function, arguing that the C-terminal arginine is essential for EGF biological activity. Cumulatively, these data suggest that the PPAD-activity-abrogating EGF function in gingival pockets may at least partially contribute to tissue damage and delayed healing within P. gingivalis-infected periodontia.


Biochimie | 2010

Prokaryote-derived protein inhibitors of peptidases: A sketchy occurrence and mostly unknown function

Tomasz Kantyka; Neil D. Rawlings; Jan Potempa

In metazoan organisms protein inhibitors of peptidases are important factors essential for regulation of proteolytic activity. In vertebrates genes encoding peptidase inhibitors constitute up to 1% of genes reflecting a need for tight and specific control of proteolysis especially in extracellular body fluids. In stark contrast unicellular organisms, both prokaryotic and eukaryotic consistently contain only few, if any, genes coding for putative peptidase inhibitors. This may seem perplexing in the light of the fact that these organisms produce large numbers of proteases of different catalytic classes with the genes constituting up to 6% of the total gene count with the average being about 3%. Apparently, however, a unicellular life-style is fully compatible with other mechanisms of regulation of proteolysis and does not require protein inhibitors to control their intracellular and extracellular proteolytic activity. So in prokaryotes occurrence of genes encoding different types of peptidase inhibitors is infrequent and often scattered among phylogenetically distinct orders or even phyla of microbiota. Genes encoding proteins homologous to alpha-2-macroglobulin (family I39), serine carboxypeptidase Y inhibitor (family I51), alpha-1-peptidase inhibitor (family I4) and ecotin (family I11) are the most frequently represented in Bacteria. Although several of these gene products were shown to possess inhibitory activity, with an exception of ecotin and staphostatins, the biological function of microbial inhibitors is unclear. In this review we present distribution of protein inhibitors from different families among prokaryotes, describe their mode of action and hypothesize on their role in microbial physiology and interactions with hosts and environment.


Biological Chemistry | 2009

Elafin is Specifically inactivated by RgpB from Porphyromonas gingivalis by Distinct Proteolytic Cleavage

Tomasz Kantyka; Ties Latendorf; Oliver Wiedow; Joachim Bartels; Regine Gläser; Grzegorz Dubin; Jens-Michael Schröder; Jan Potempa; Ulf Meyer-Hoffert

Abstract Porphyromonas gingivalis, the major causative bacterium of periodontitis, contributes significantly to elevated proteolytic activity at periodontal pockets owing to the presence of both bacteria and host, predominantly neutrophil-derived, serine proteases. Normally the activity of the latter enzymes is tightly regulated by endogenous proteins, including elafin, a potent neutrophil elastase and proteinase 3 inhibitor released from epithelial cells at sites of inflammation. Here, we report that all three gingipains (HRgpA, RgpB, and Kgp) have the ability to degrade elafin, with RgpB being far more efficient than other gingipains. RgpB efficiently inactivates the inhibitory activity of elafin at subnanomolar concentrations through proteolysis limited to the Arg22-Cys23 peptide bond within the surface loop harboring the inhibitor active site. Notably, elafin resists inactivation by several Staphylococcus aureus-derived serine and cysteine proteases, confirming the high stability of this protein against proteolytic degradation. Therefore, we conclude that elafin inactivation by RgpB represents a specific pathogenic adaptation of P. gingivalis to disturb the protease-protease inhibitor balance in the infected gingival tissue. This contributes to enhanced degradation of host proteins and generation of a pool of peptides serving as nutrients for this asaccharolytic pathogen.


Journal of Biological Chemistry | 2014

Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity.

Ewa Bielecka; Carsten Scavenius; Tomasz Kantyka; Monika Jusko; Danuta Mizgalska; Borys Szmigielski; Barbara Potempa; Jan J. Enghild; Eric R. Prossnitz; Anna M. Blom; Jan Potempa

Background: Pathogenic bacteria avoid killing by phagocytes through inhibition of C5a chemotactic activity. Results: Periodontopathogen Porphyromonas gingivalis expresses unique peptidylarginine deiminase, which inactivates C5a by converting C-terminal arginine to citrulline. Conclusion: Citrullination of C5a constitutes a novel virulence strategy that may contribute to immune evasion by P. gingivalis. Significance: P. gingivalis peptidylarginine deiminase is a potential target for drug development. Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.

Collaboration


Dive into the Tomasz Kantyka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Bielecka

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aneta Sroka

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge