Aneta Sroka
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aneta Sroka.
Arthritis & Rheumatism | 2010
Natalia Wegner; Robin Wait; Aneta Sroka; Sigrun Eick; Ky-Anh Nguyen; Karin Lundberg; A. J. Kinloch; Shauna Culshaw; Jan Potempa; Patrick J. Venables
OBJECTIVE To investigate protein citrullination by the periodontal pathogen Porphyromonas gingivalis as a potential mechanism for breaking tolerance to citrullinated proteins in rheumatoid arthritis (RA). METHODS The expression of endogenous citrullinated proteins was analyzed by immunoblotting of cell extracts from P gingivalis and 10 other oral bacteria. P gingivalis-knockout strains lacking the bacterial peptidylarginine deiminases (PADs) or gingipains were created to assess the role of these enzymes in citrullination. Citrullination of human fibrinogen and α-enolase by P gingivalis was studied by incubating live wild-type and knockout strains with the proteins and analyzing the products by immunoblotting and mass spectrometry. RESULTS Endogenous protein citrullination was abundant in P gingivalis but lacking in the other oral bacteria. Deletion of the bacterial PAD gene resulted in complete abrogation of protein citrullination. Inactivation of arginine gingipains, but not lysine gingipains, led to decreased citrullination. Incubation of wild-type P gingivalis with fibrinogen or α-enolase caused degradation of the proteins and citrullination of the resulting peptides at carboxy-terminal arginine residues, which were identified by mass spectrometry. CONCLUSION Our findings demonstrate that among the oral bacterial pathogens tested, P gingivalis is unique in its ability to citrullinate proteins. We further show that P gingivalis rapidly generates citrullinated host peptides by proteolytic cleavage at Arg-X peptide bonds by arginine gingipains, followed by citrullination of carboxy-terminal arginines by bacterial PAD. Our results suggest a novel model where P gingivalis-mediated citrullination of bacterial and host proteins provides a molecular mechanism for generating antigens that drive the autoimmune response in RA.
Current Protein & Peptide Science | 2003
Jan Potempa; Aneta Sroka; Takahisa Imamura; James Travis
Gingipains, extracellular cysteine proteinases of Porphyromonas gingivalis, constitute the major virulence factor of this periodontopathogenic bacterium. They are the product of three genes, two coding for an Arg-specific (RgpA and RgpB) and one for a Lys-specific proteinase (Kgp). Proteinase domains of RgpA and RgpB are virtually identical; however, the gene encoding the former enzyme is missing a large segment coding for hemaglutinin / adhesin (HA) domains. The latter domains are present also in Kgp. The tertiary structure of RgpB revealed that the proteinase domain of gingipains has a protein fold referred to as the caspase-hemoglobinase fold. On this basis, they are also evolutionary related to other highly specific proteinases including clostripain, caspases, legumains and separase (clan CD of cysteine peptidases). Gingipains are produced as large preproproteins and are subject to elaborate, not yet fully understood, secretion, glycosylation, activation, and maturation processes. How they traverse the outer membrane is unknown, although it can be hypothesized that they use an autotransporter pathway. Apparently during transport through the periplasm the LPS-like glycan moiety is added at the conserved C-terminal portion of progingipains. At the cell surface pro-gingipains fold into partially active, single-chain zymogens and undergo autocatalytic, intermolecular processing. Two sequential cleavages within the profragment domain enhance zymogen activity and in the case of RgpA and Kgp are followed by excision of the individual HA domains. These domains are further truncated at the C-terminus by concerted action of Kgp and carboxypeptidase and form a non-covalent multidomain, multifunctional complex anchored into the outer membrane by the glycated, C-terminal HA domain. This hypothetical scenario is a reasonable explanation for the occurrence of many forms of gingipains.
PLOS Pathogens | 2013
Katarzyna Maresz; Annelie Hellvard; Aneta Sroka; Karina Adamowicz; Ewa Bielecka; Joanna Koziel; Katarzyna Gawron; Danuta Mizgalska; Katarzyna Marcińska; Małgorzata Benedyk; Krzysztof Pyrc; Anne-Marie Quirke; Roland Jonsson; Saba Alzabin; Patrick J. Venables; Ky-Anh Nguyen; Piotr Mydel; Jan Potempa
Rheumatoid arthritis and periodontitis are two prevalent chronic inflammatory diseases in humans and are associated with each other both clinically and epidemiologically. Recent findings suggest a causative link between periodontal infection and rheumatoid arthritis via bacteria-dependent induction of a pathogenic autoimmune response to citrullinated epitopes. Here we showed that infection with viable periodontal pathogen Porphyromonas gingivalis strain W83 exacerbated collagen-induced arthritis (CIA) in a mouse model, as manifested by earlier onset, accelerated progression and enhanced severity of the disease, including significantly increased bone and cartilage destruction. The ability of P. gingivalis to augment CIA was dependent on the expression of a unique P. gingivalis peptidylarginine deiminase (PPAD), which converts arginine residues in proteins to citrulline. Infection with wild type P. gingivalis was responsible for significantly increased levels of autoantibodies to collagen type II and citrullinated epitopes as a PPAD-null mutant did not elicit similar host response. High level of citrullinated proteins was also detected at the site of infection with wild-type P. gingivalis. Together, these results suggest bacterial PAD as the mechanistic link between P. gingivalis periodontal infection and rheumatoid arthritis.
Journal of Bacteriology | 2001
Aneta Sroka; Maryta Sztukowska; Jan Potempa; James Travis; Caroline Attardo Genco
Porphyromonas gingivalis can use hemoglobin bound to haptoglobin and heme complexed to hemopexin as heme sources; however, the mechanism by which hemin is released from these proteins has not been defined. In the present study, using a variety of analytical methods, we demonstrate that lysine-specific cysteine proteinase of P. gingivalis (gingipain K, Kgp) can efficiently cleave hemoglobin, hemopexin, haptoglobin, and transferrin. Degradation of hemopexin and transferrin in human serum by Kgp was also detected; however, we did not observe extensive degradation of hemoglobin in serum by Kgp. Likewise the beta-chain of haptoglobin was partially protected from degradation by Kgp in a haptoglobin-hemoglobin complex. Arginine-specific gingipains (gingipains R) were also found to degrade hemopexin and transferrin in serum; however, this was observed only at relatively high concentrations of these enzymes. Growth of P. gingivalis strain A7436 in a minimal media with normal human serum as a source of heme correlated not only with the ability of the organism to degrade hemoglobin, haptoglobin, hemopexin, and transferrin but also with an increase in gingipain K and gingipain R activity. The ability of gingipain K to cleave hemoglobin, haptoglobin, and hemopexin may provide P. gingivalis with a usable source of heme for growth and may contribute to the proliferation of P. gingivalis within periodontal pockets in which erythrocytes are abundant.
Journal of Periodontology | 2011
Arndt Guentsch; Martin Kramesberger; Aneta Sroka; Wolfgang Pfister; Jan Potempa; Sigrun Eick
BACKGROUND The analysis of samplings from periodontal pockets is important in the diagnosis and therapy of periodontitis. In this study, three different sampling techniques were compared to determine whether one method yielded samples suitable for the reproducible and simultaneous determination of bacterial load, cytokines, neutrophil elastase, and arginine-specific gingipains (Rgps). Rgps are an important virulence factor of Porphyromonas gingivalis, the exact concentration of which in gingival crevicular fluid (GCF) has not been quantified. METHODS GCF was sampled from four sites per patient (one sample per quadrant using two samples per method) in 36 patients with chronic periodontitis. One week later, the procedure was repeated with alternative methods. Variables determined were loads of Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) and P. gingivalis, levels of interleukin-6 and -8, activity of neutrophil elastase, and level of Rgps. RESULTS The detected cytokine levels were higher using paper strips compared to paper points. Bacteria were found in similar loads from paper strips and paper points. Rgps were only detectable in high quantities by washing the periodontal pocket. The level of Rgps correlated with the load of P. gingivalis. CONCLUSIONS The use of paper strips was suitable for the simultaneous determination of microbial and immunologic parameters. Obtaining GCF by washing can be useful for special purposes. The gingipain concentration in periodontal pockets was directly determined to be ≤1.5 μM. This value indicated that most of the substrates of these proteases by in vitro assays identified until now can be easily degraded in P. gingivalis-infected sites.
Archives of Microbiology | 2008
Teresa Olczak; Aneta Sroka; Jan Potempa; Mariusz Olczak
Porphyromonas gingivalis HmuY is a putative heme-binding lipoprotein associated with the outer membrane. It is part of an operon together with a gene encoding an outer-membrane hemin utilization receptor (HmuR) and four uncharacterized genes. A similar operon organization was found in Bacteroides fragilis and B. thetaiotaomicron, with the former containing an additional HmuY homologue encoded upstream of the hmuR-like gene. In P. gingivalis cultured under heme-limited conditions, a ∼1-kb hmuY transcript was produced at high levels along with some ∼3.5 and ∼9-kb transcripts. Compared with the parental strain, mutants deficient in hmuY or hmuR or hmuY–hmuR gene function grew more slowly and bound lower amounts of hemin and hemoglobin. Significantly, they grew more slowly or were unable to grow when human serum was used as the sole iron/heme source. Analysis of the hmu promoter showed that it is regulated by iron. The HmuY protein normally occurs as a homodimer, but in the presence of hemin it may form tetramers. These results show that HmuY may be the first reported member of a new class of proteins in Porphyromonas and Bacteroides species involved in heme utilization, a function being exerted in conjunction with HmuR, an outer-membrane heme transporter.
PLOS Pathogens | 2009
Halina Wójtowicz; Tibisay Guevara; Cynthia Tallant; Mariusz Olczak; Aneta Sroka; Jan Potempa; Maria Solà; Teresa Olczak; F. Xavier Gomis-Rüth
Infection, survival, and proliferation of pathogenic bacteria in humans depend on their capacity to impair host responses and acquire nutrients in a hostile environment. Among such nutrients is heme, a co-factor for oxygen storage, electron transport, photosynthesis, and redox biochemistry, which is indispensable for life. Porphyromonas gingivalis is the major human bacterial pathogen responsible for severe periodontitis. It recruits heme through HmuY, which sequesters heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. Here we report that heme binding does not significantly affect the secondary structure of HmuY. The crystal structure of heme-bound HmuY reveals a new all-β fold mimicking a right hand. The thumb and fingers pinch heme iron through two apical histidine residues, giving rise to highly symmetric octahedral iron co-ordination. The tetrameric quaternary arrangement of the protein found in the crystal structure is consistent with experiments in solution. It shows that thumbs and fingertips, and, by extension, the bound heme groups, are shielded from competing heme-binding proteins from the host. This may also facilitate heme transport to HmuR for internalization. HmuY, both in its apo- and in its heme-bound forms, is resistant to proteolytic digestion by trypsin and the major secreted proteases of P. gingivalis, gingipains K and R. It is also stable against thermal and chemical denaturation. In conclusion, these studies reveal novel molecular properties of HmuY that are consistent with its role as a putative virulence factor during bacterial infection.
Infection and Immunity | 2005
Renata Mężyk-Kopeć; Małgorzata Bzowska; Jan Potempa; Monika Bzowska; Natalia Jura; Aneta Sroka; Roy A. Black; Joanna Bereta
ABSTRACT Gingipains are cysteine proteinases produced by Porphyromonas gingivalis, a major causative bacterium of adult periodontitis. They consist of arginine-specific (HRgpA and RgpB) and lysine-specific (Kgp) proteinases. Gingipains strongly affect the host defense system by degrading some cytokines, components of the complement system, and several immune cell receptors. In an in vitro model, gingipains were shown to degrade soluble tumor necrosis factor alpha (TNF-α). However, since membrane TNF-α shows strong biological activity, especially in local inflammatory lesions, it was worth investigating whether gingipains might also destroy membrane TNF-α and limit its biological activities. To avoid a possible influence of gingipains on ADAM17, the secretase of TNF-α, the majority of experiments were performed using ADAM17−/− fibroblasts stably transfected with cDNA of human pro-TNF-α (ADAM17−/− TNF+). Arginine-specific gingipains (Rgps) strongly diminished the level of TNF-α on the cell surface as measured by flow cytometry, and this process was not accompanied by an increased concentration of soluble TNF-α in the culture medium. Degradation of membrane TNF-α by Rgps correlated with a strong decrease in TNF-α-mediated biological activities of ADAM17−/− TNF+ cells. First, the activation state of transcription factor NF-κB was suppressed; second, the cells were no longer able to induce apoptosis in HL-60 cells. Kgp was also able to cleave membrane TNF-α, but its effect was much weaker than that of Rgps. Gingipains also limited the binding of native TNF-α to the target cells. Thus, gingipains are able not only to cleave soluble TNF-α but also to destroy the membrane form of the cytokine, which may additionally dysregulate the cytokine network.
PLOS ONE | 2011
John W. Smalley; Dominic P. Byrne; Andrew J. Birss; Halina Wójtowicz; Aneta Sroka; Jan Potempa; Teresa Olczak
Haem (iron protoporphyrin IX) is both an essential growth factor and virulence regulator for the periodontal pathogen Porphyromonas gingivalis, which acquires it mainly from haemoglobin via the sequential actions of the R- and K-specific gingipain proteases. The haem-binding lipoprotein haemophore HmuY and its cognate receptor HmuR of P. gingivalis, are responsible for capture and internalisation of haem. This study examined the role of the HmuY in acquisition of haem from haemoglobin and the cooperation between HmuY and gingipain proteases in this process. Using UV-visible spectroscopy and polyacrylamide gel electrophoresis, HmuY was demonstrated to wrest haem from immobilised methaemoglobin and deoxyhaemoglobin. Haem extraction from oxyhaemoglobin was facilitated after oxidation to methaemoglobin by pre-treatment with the P. gingivalis R-gingipain A (HRgpA). HmuY was also capable of scavenging haem from oxyhaemoglobin pre-treated with the K-gingipain (Kgp). This is the first demonstration of a haemophore working in conjunction with proteases to acquire haem from haemoglobin. In addition, HmuY was able to extract haem from methaemalbumin, and could bind haem, either free in solution or from methaemoglobin, even in the presence of serum albumin.
Journal of Biological Chemistry | 2013
Sjoerd van der Post; Durai B. Subramani; Malin Bäckström; Malin E. V. Johansson; Malene Bech Vester-Christensen; Ulla Mandel; Eric P. Bennett; Henrik Clausen; Gunnar Dahlén; Aneta Sroka; Jan Potempa; Gunnar C. Hansson
Background: MUC2 polymers form the mucus layer of colon that separates luminal bacteria from the epithelium. Results: P. gingivalis secrets a protease that cleaves the MUC2 mucin, a cleavage modulated by O-glycosylation. Conclusion: Bacteria can disrupt the MUC2 polymer via proteolytic cleavage. However, O-glycosylation can inhibit this process. Significance: Bacteria can dissolve the protective inner mucus layer, potentially triggering colitis. The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a synthetic peptide covering the IRTT sequence. Only GalNAc-T3 was able to glycosylate the second Thr in IRTT, rendering the sequence resistant to cleavage by RgpB. Furthermore, when GalNAc-T3 was expressed in CHO cells expressing the MUC2 C terminus, the second threonine was glycosylated, and the protein became resistant to RgpB cleavage. These findings suggest that bacteria can produce proteases capable of dissolving the inner protective mucus layer by specific cleavages in the MUC2 mucin and that this cleavage can be modulated by site-specific O-glycosylation.