Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomasz Osinski is active.

Publication


Featured researches published by Tomasz Osinski.


Journal of Biological Chemistry | 2012

Molecular determinants for antibody binding on group 1 house dust mite allergens.

Maksymilian Chruszcz; Anna Pomés; Jill Glesner; Lisa D. Vailes; Tomasz Osinski; Przemyslaw J. Porebski; Karolina A. Majorek; Peter W. Heymann; Thomas A.E. Platts-Mills; Wladek Minor; Martin D. Chapman

Background: A unique, cross-reacting monoclonal antibody binds both Der f 1 and Der p 1. Results: A common epitope present on both Der f 1 and Der p 1 was identified and mutated. Conclusion: Mutagenesis and antibody binding analysis allowed identification of IgE antibody binding sites. Significance: The obtained data will lead to the production of hypoallergens with low IgE antibody binding capacity. House dust mites produce potent allergens, Der p 1 and Der f 1, that cause allergic sensitization and asthma. Der p 1 and Der f 1 are cysteine proteases that elicit IgE responses in 80% of mite-allergic subjects and have proinflammatory properties. Their antigenic structure is unknown. Here, we present crystal structures of natural Der p 1 and Der f 1 in complex with a monoclonal antibody, 4C1, which binds to a unique cross-reactive epitope on both allergens associated with IgE recognition. The 4C1 epitope is formed by almost identical amino acid sequences and contact residues. Mutations of the contact residues abrogate mAb 4C1 binding and reduce IgE antibody binding. These surface-exposed residues are molecular targets that can be exploited for development of recombinant allergen vaccines.


Current Opinion in Structural Biology | 2010

Unmet challenges of structural genomics.

Maksymilian Chruszcz; Marcin J. Domagalski; Tomasz Osinski; Alexander Wlodawer; Wladek Minor

Structural genomics (SG) programs have developed during the last decade many novel methodologies for faster and more accurate structure determination. These new tools and approaches led to the determination of thousands of protein structures. The generation of enormous amounts of experimental data resulted in significant improvements in the understanding of many biological processes at molecular levels. However, the amount of data collected so far is so large that traditional analysis methods are limiting the rate of extraction of biological and biochemical information from 3D models. This situation has prompted us to review the challenges that remain unmet by SG, as well as the areas in which the potential impact of SG could exceed what has been achieved so far.


Molecular Immunology | 2013

Structural and bioinformatic analysis of the kiwifruit allergen Act d 11, a member of the family of ripening-related proteins

Maksymilian Chruszcz; Maria Antonietta Ciardiello; Tomasz Osinski; Karolina A. Majorek; Ivana Giangrieco; Jose Font; Heimo Breiteneder; Konstantinos Thalassinos; Wladek Minor

The allergen Act d 11, also known as kirola, is a 17 kDa protein expressed in large amounts in ripe green and yellow-fleshed kiwifruit. Ten percent of all kiwifruit-allergic individuals produce IgE specific for the protein. Using X-ray crystallography, we determined the first three-dimensional structures of Act d 11, produced from both recombinant expression in Escherichia coli and from the natural source (kiwifruit). While Act d 11 is immunologically correlated with the birch pollen allergen Bet v 1 and other members of the pathogenesis-related protein family 10 (PR-10), it has low sequence similarity to PR-10 proteins. By sequence Act d 11 appears instead to belong to the major latex/ripening-related (MLP/RRP) family, but analysis of the crystal structures shows that Act d 11 has a fold very similar to that of Bet v 1 and other PR-10 related allergens regardless of the low sequence identity. The structures of both the natural and recombinant protein include an unidentified ligand, which is relatively small (about 250 Da by mass spectrometry experiments) and most likely contains an aromatic ring. The ligand-binding cavity in Act d 11 is also significantly smaller than those in PR-10 proteins. The binding of the ligand, which we were not able to unambiguously identify, results in conformational changes in the protein that may have physiological and immunological implications. Interestingly, the residue corresponding to Glu45 in Bet v 1 (Glu46), which is important for IgE binding to the birch pollen allergen, is conserved in Act d 11, even though it is not in other allergens with significantly higher sequence identity to Bet v 1. We suggest that the so-called Gly-rich loop (or P-loop), which is conserved in all PR-10 allergens, may be responsible for IgE cross-reactivity between Bet v 1 and Act d 11.


Journal of Immunology | 2015

Structural Analysis of Der p 1-Antibody Complexes and Comparison with Complexes of Proteins or Peptides with Monoclonal Antibodies.

Tomasz Osinski; Anna Pomés; Karolina A. Majorek; Jill Glesner; Lesa R. Offermann; Lisa D. Vailes; Martin D. Chapman; Wladek Minor; Maksymilian Chruszcz

Der p 1 is a major allergen from the house dust mite, Dermatophagoides pteronyssinus, that belongs to the papain-like cysteine protease family. To investigate the antigenic determinants of Der p 1, we determined two crystal structures of Der p 1 in complex with the Fab fragments of mAbs 5H8 or 10B9. Epitopes for these two Der p 1–specific Abs are located in different, nonoverlapping parts of the Der p 1 molecule. Nevertheless, surface area and identity of the amino acid residues involved in hydrogen bonds between allergen and Ab are similar. The epitope for mAb 10B9 only showed a partial overlap with the previously reported epitope for mAb 4C1, a cross-reactive mAb that binds Der p 1 and its homolog Der f 1 from Dermatophagoides farinae. Upon binding to Der p 1, the Fab fragment of mAb 10B9 was found to form a very rare α helix in its third CDR of the H chain. To provide an overview of the surface properties of the interfaces formed by the complexes of Der p 1–10B9 and Der p 1–5H8, along with the complexes of 4C1 with Der p 1 and Der f 1, a broad analysis of the surfaces and hydrogen bonds of all complexes of Fab–protein or Fab–peptide was performed. This work provides detailed insight into the cross-reactive and specific allergen–Ab interactions in group 1 mite allergens. The surface data of Fab–protein and Fab–peptide interfaces can be used in the design of conformational epitopes with reduced Ab binding for immunotherapy.


Molecular Immunology | 2014

The major cockroach allergen Bla g 4 binds tyramine and octopamine.

Lesa R. Offermann; Siew Leong Chan; Tomasz Osinski; Yih Wan Tan; Fook Tim Chew; J. Sivaraman; Yu-Keung Mok; Wladek Minor; Maksymilian Chruszcz

Bla g 4 is a male cockroach specific protein and is one of the major allergens produced by Blattella germanica (German cockroach). This protein belongs to the lipocalin family that comprises a set of proteins that characteristically bind small hydrophobic molecules and play a role in a number of processes such as: retinoid and pheromone transport, prostaglandin synthesis and mammalian immune response. Using NMR and isothermal titration calorimetry we demonstrated that Bla g 4 binds tyramine and octopamine in solution. In addition, crystal structure analysis of the complex revealed details of tyramine binding. As tyramine and octopamine play important roles in invertebrates, and are counterparts to vertebrate adrenergic transmitters, we speculate that these molecules are physiological ligands for Bla g 4. The nature of binding these ligands to Bla g 4 sheds light on the possible biological function of the protein. In addition, we performed a large-scale analysis of Bla g 4 and Per a 4 (an allergen from American cockroach) homologs to get insights into the function of these proteins. This analysis together with a structural comparison of Blag 4 and Per a 4 suggests that these proteins may play different roles and most likely bind different ligands. Accession numbers: The atomic coordinates and the structure factors have been deposited to the Protein Data Band under accession codes: 4N7C for native Bla g 4 and 4N7D for the Se-Met Bla g 4 structure.


Journal of Bacteriology | 2016

Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae

Jing Hou; Heping Zheng; Maksymilian Chruszcz; Matthew D. Zimmerman; Igor A. Shumilin; Tomasz Osinski; Sarah Grimshaw; Wladek Minor

UNLABELLED β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. IMPORTANCE This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.


Journal of Immunology | 2017

Antigenic Determinants of Der p 1: Specificity and Cross-Reactivity Associated with IgE Antibody Recognition

Jill Glesner; Lisa D. Vailes; Caleb R. Schlachter; Nicholas Mank; Wladek Minor; Tomasz Osinski; Maksymilian Chruszcz; Martin D. Chapman; Anna Pomés

Der p 1 and Der f 1 are major allergens from Dermatophagoides pteronyssinus and D. farinae, respectively. An analysis of antigenic determinants on both allergens was performed by site-directed mutagenesis. The analysis was based on the x-ray crystal structures of the allergens in complex with Fab fragments of three murine mAbs that interfere with IgE Ab binding: the two Der p 1–specific mAbs 5H8 and 10B9, and the cross-reactive mAb 4C1. On one hand, selected residues in the epitopes for mAb 5H8 and mAb 4C1 were substituted with amino acids that resulted in impaired Ab binding to Der p 1. On the other hand, an epitope for the Der p 1–specific mAb 10B9, which partially overlaps with mAb 4C1, was created in Der f 1. The mutation of 1–3 aa residues in Der f 1 was sufficient to bind mAb 10B9. These residues form hydrogen bonds with CDRs of the Ab other than H CDR3. This observation unveils an exception to the dominant role of H CDR3 commonly observed in Ag recognition. Overall, this study resulted in the identification of important residues for mAb and IgE Ab recognition in group 1 mite allergens. This information can be used to engineer allergen mutants with reduced IgE Ab binding for immunotherapy.


Biochimica et Biophysica Acta | 2017

Insight into the 3D structure and substrate specificity of previously uncharacterized GNAT superfamily acetyltransferases from pathogenic bacteria

Karolina A. Majorek; Tomasz Osinski; David Tran; Alina Revilla; Wayne F. Anderson; Wladek Minor; Misty L. Kuhn

Members of the Gcn5-related N-acetyltransferase (GNAT) superfamily catalyze the acetylation of a wide range of small molecule and protein substrates. Due to their abundance in all kingdoms of life and diversity of their functions, they are implicated in many aspects of eukaryotic and prokaryotic physiology. Although numerous GNATs have been identified thus far, many remain structurally and functionally uncharacterized. The elucidation of their structures and functions is critical for broadening our knowledge of this diverse and important superfamily. In this work, we present the structural and kinetic analyses of two previously uncharacterized bacterial acetyltransferases - SACOL1063 from Staphylococcus aureus strain COL and CD1211 from Clostridium difficile strain 630. Our structures of SACOL1063 show substantial flexibility of a loop that is likely responsible for substrate recognition and binding compared to structures of other homologs. In the CoA complex structure, we found two CoA molecules bound in both the canonical AcCoA/CoA-binding site and the acceptor-substrate-binding site. Our work also provides initial clues regarding the substrate specificity of these two enzymes; however, their native function(s) remain unknown. We found both proteins act as N- rather than O-acetyltransferases and preferentially acetylate l-threonine. The combination of structural and kinetic analyses of these two previously uncharacterized GNATs provides fundamental knowledge and a framework on which future studies can be built to elucidate their native functions.


The Journal of Allergy and Clinical Immunology | 2012

Alternaria alternata allergen Alt a 1: a unique β-barrel protein dimer found exclusively in fungi.

Maksymilian Chruszcz; Martin D. Chapman; Tomasz Osinski; Robert Solberg; Matthew Demas; Przemyslaw J. Porebski; Karolina A. Majorek; Anna Pomés; Wladek Minor


The Journal of Allergy and Clinical Immunology | 2012

Alternaria alternata allergen Alt a 1: A unique [beta]-barrel protein dimer found exclusively in fungi

Maksymilian Chruszcz; Martin D. Chapman; Tomasz Osinski; Robert Solberg; Matthew Demas; Przemyslaw J. Porebski; Karolina A. Majorek; Anna Pomés; Wladek Minor

Collaboration


Dive into the Tomasz Osinski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maksymilian Chruszcz

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Pomés

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lesa R. Offermann

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge