Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomasz Stefaniuk is active.

Publication


Featured researches published by Tomasz Stefaniuk.


Optics Letters | 2010

Multiscale analysis of subwavelength imaging with metal-dielectric multilayers

Rafa l Kotyński; Tomasz Stefaniuk

Imaging with a layered superlens is a spatial filtering operation characterized by the point spread function (PSF). We show that in the same optical system the image of a narrow subwavelength Gaussian incident field may be surprisingly dissimilar to the PSF, and the width of the PSF is not a straightforward measure of the resolution. The FWHM or standard deviation of the PSF gives ambiguous information about the actual resolution, and imaging of objects smaller than the FWHM of the PSF is possible. A multiscale analysis of imaging gives good insight into the peculiar scale-dependent properties of subwavelength imaging.


Applied Physics A | 2011

Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers

Rafal Kotynski; Tomasz Stefaniuk; Anna Pastuszczak

We demonstrate numerically the diffraction-free propagation of sub-wavelength sized optical beams through simple elements built of metal-dielectric multilayers. The proposed metamaterial consists of silver and a high refractive index dielectric, and is designed using the effective medium theory as strongly anisotropic and impedance matched to air. Further it is characterised with the transfer matrix method, and investigated with FDTD. The diffraction-free behaviour is verified by the analysis of FWHM of PSF in the function of the number of periods. Small reflections, small attenuation, and reduced Fabry–Pérot resonances make it a flexible diffraction-free material for arbitrarily shaped optical planar elements with sizes of the order of one wavelength.


Angewandte Chemie | 2014

Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold-polyoxometalate particles.

Renata Solarska; Krzysztof Bienkowski; Sylwia Zoladek; Aldona Majcher; Tomasz Stefaniuk; Pawel J. Kulesza; Jan Augustynski

Tungsten trioxide (WO3) is one of a few stable semiconductor materials liable to produce solar fuel by photoelectrochemical water splitting. To enhance its visible light conversion efficiency, we incorporated plasmonic gold nanoparticles (Au NPs) derivatized with polyoxometalate (H3PMo12O40) species into WO3. The combined plasmonic and catalytic effect of Au NPs anchored to the WO3 surface resulted in a large increase of water photooxidation currents. Shielding the Au NPs with polyoxometalates appears to be an effective means to avoid formation of recombination centers at the photoanode surface.


ACS Applied Materials & Interfaces | 2015

Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation.

Piotr Wróbel; Tomasz Stefaniuk; Marek Trzcinski; Aleksandra A. Wronkowska; Andrzej Wronkowski; Tomasz Szoplik

We have investigated the influence of the Ge wetting layer on both ohmic and scattering losses of a surface plasmon-polariton (SPP) wave in Ag film deposited on SiO2 substrate with an e-beam evaporator. Samples were examined by means of atomic force microscopy (AFM), spectroscopic ellipsometry (SE), two-dimensional X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and microscopic four-point probe (M4PP) sheet resistance measurements. Ag films of 100 nm thickness were deposited at 180 and 295 K directly onto the substrates with or without a Ge interlayer. In AFM scans, we confirm the fact that the commonly used Ge adhesion layer smooths the surface of Ag film and therefore reduces scattering losses of the SPP wave on surface roughness. However, our ellipsometric measurements indicate for the first time that segregation of Ge leads to a considerable increase in ohmic losses connected with a boost of the imaginary part of Ag permittivity in the 500-800 nm spectral range. Moreover, the trend develops over time, as confirmed in a series of measurements performed over an interval of three months. XPS analysis confirms the Ge segregation to the Ag free surface and most probably to grain boundaries. M4PP measurements show that the specific resistivity in Ag films evaporated on a Ge interlayer at 295 K is nearly twice as high as in layers deposited directly on a SiO2 substrate. The use of an amorphous Al2O3 overlayer prevents Ge segregation to free surface.


Applied Optics | 2014

Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity

Tomasz Stefaniuk; Piotr Wróbel; Paweł Marek Trautman; Tomasz Szoplik

The future of plasmonic devices depends on effective reduction of losses of surface plasmon-polariton waves propagating along metal-dielectric interfaces. Energy dissipation is caused by resistive heating at the skin-deep-thick outer layer of metal and scattering of surface waves on rough metal-dielectric interfaces. Fabrication of noble metal nanolayers with a smooth surface still remains a challenge. In this paper, Ag layers of 10, 30, and 50 nm thickness deposited directly on fused-silica substrates and with a 1 nm wetting layer of Ge, Ti, and Ni are examined using an atomic-force microscope and four-probe resistivity measurements. In the case of all three wetting layers, the specific resistivity of silver film decreases as the thickness increases. The smallest, equal 0.4 nm root mean squared roughness of Ag surface of 10 nm thickness is achieved for Ge interlayer; however, due to Ge segregation the specific resistivity of silver film in Ag/Ge/SiO₂ structures is about twice higher than that in Ag/Ti/SiO₂ and Ag/Ni/SiO₂ sandwiches.


Opto-electronics Review | 2010

Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies

Rafal Kotynski; Hovik V. Baghdasaryan; Tomasz Stefaniuk; Anna Pastuszczak; Marian Marciniak; Andrei V. Lavrinenko; Krassimir Panajotov; Tomasz Szoplik

We characterize the sensitivity of imaging properties of a layered silver-TiO2 flat lens to fabrication inaccuracies. The lens is designed for approximately diffraction-free imaging with subwavelength resolution at distances in the order of a wavelength. Its operation may be attributed to self-collimation with a secondary role of Fabry-Perot resonant transmission, even though the first order effective medium description of the structure is inaccurate. Super-resolution is maintained for a broad range of overall thicknesses and the total thickness of the multilayer is limited by absorption. The tolerance analysis indicates that the resolution and transmission efficiency are highly sensitive to small changes of layer thicknesses.


Optics Express | 2015

Optical fibers with gradient index nanostructured core.

Ryszard Buczynski; Mariusz Klimczak; Tomasz Stefaniuk; Rafal Kasztelanic; Bartłomiej Siwicki; Grzegorz Stepniewski; Jarosław Cimek; Dariusz Pysz; Ryszard Stepien

We present a new approach for the development of structured optical fibers. It is shown that fibers having an effective gradient index profile with designed refractive index distribution can be developed with internal nanostructuring of the core composed of two glasses. As proof-of-concept, fibers made of two soft glasses with a parabolic gradient index profile are developed. Energy-dispersive X-ray spectroscopy reveals a possibility of selective diffusion of individual chemical ingredients among the sub-wavelength components of the nanostructure. This hints a postulate that core nanostructuring also changes material dispersion of the glasses in the core, potentially opening up unique dispersion shaping possibilities.


european quantum electronics conference | 2017

Measurement of nanoplasmonic field enhancement with ultrafast photoemission

Z. Pápa; Péter Rácz; István Márton; J. Budai; Piotr Wróbel; Tomasz Stefaniuk; Christine Prietl; Joachim R. Krenn; Péter Dombi

Plasmonic enhancement of optical near-fields at nanostructures provides for localization of the energy of light on the nanoscale. This phenomenon allowed pioneering applications in spectroscopy, photovoltaics and sensorics. It remains a challenge to measure the extent of the maximum achievable nanoplasmonic field enhancement for a particular sample. Even though near-field probing methods such as scanning near-field optical microscopy (SNOM) can reach a resolution down to 8–10 nm, probing near-fields on ∼1 nm scale needs a different approach. Here, we demonstrate a method for nanoplasmonic near-field measurement with the help of photoemitted electrons induced by femtosecond laser pulses.


Optical Materials Express | 2015

Limits in development of photonic crystal fibers with a subwavelength inclusion in the core

Jacek Pniewski; Tomasz Stefaniuk; Grzegorz Stepniewski; Dariusz Pysz; Tadeusz Martynkien; Ryszard Stepien; Ryszard Buczynski

In this paper we report on limits related to the development of optical fibers with glass subwavelength inclusions incorporated into the core. We present the fabrication of a photonic crystal fiber made of an in-house developed silicate NC21 glass with a subwavelength-size high refractive index inclusion in the core made of lead silicate SF6 glass. The core has a diameter of 2 µm, while the diameter of the inclusion varies from 0 to 800 nm. Using energy-dispersive X-ray spectroscopy technique we show a dramatic change in the inclusion profile and its composition caused by a non-uniform diffusion of chemical molecules during the stack-and-draw fiber fabrication process. Therefore, the effective refractive index and the material dispersion of the final fiber are significantly different than for bulk glasses, which leads to an alteration of optical properties of the final fiber. A unique non-monotonic characteristic of the effective material dispersion is used to reproduce the fiber dispersion characteristic.


Photonics Letters of Poland | 2013

Smooth Al nanolayers deposition on sapphire and quartz substrates

Piotr Wróbel; Tomasz Stefaniuk; Arkadiusz Ciesielski; Tomasz Szoplik

The paper presents the way that colour can serve solving the problem of calibration points indexing in a camera geometrical calibration process. We propose a technique in which indexes of calibration points in a black-and-white chessboard are represented as sets of colour regions in the neighbourhood of calibration points. We provide some general rules for designing a colour calibration chessboard and provide a method of calibration image analysis. We show that this approach leads to obtaining better results than in the case of widely used methods employing information about already indexed points to compute indexes. We also report constraints concerning the technique. Nowadays we are witnessing an increasing need for camera geometrical calibration systems. They are vital for such applications as 3D modelling, 3D reconstruction, assembly control systems, etc. Wherever possible, calibration objects placed in the scene are used in a camera geometrical calibration process. This approach significantly increases accuracy of calibration results and makes the calibration data extraction process easier and universal. There are many geometrical camera calibration techniques for a known calibration scene [1]. A great number of them use as an input calibration points which are localised and indexed in the scene. In this paper we propose the technique of calibration points indexing which uses a colour chessboard. The presented technique was developed by solving problems we encountered during experiments with our earlier methods of camera calibration scene analysis [2]-[3]. In particular, the proposed technique increases the number of indexed points points in case of local lack of calibration points detection. At the beginning of the paper we present a way of designing a chessboard pattern. Then we describe a calibration point indexing method, and finally we show experimental results. A black-and-white chessboard is widely used in order to obtain sub-pixel accuracy of calibration points localisation [1]. Calibration points are defined as corners of chessboard squares. Assuming the availability of rough localisation of these points, the points can be indexed. Noting that differences in distances between neighbouring points in calibration scene images differ slightly, one of the local searching methods can be employed (e.g. [2]). Methods of this type search for a calibration point to be indexed, using a window of a certain size. The position of the window is determined by a vector representing the distance between two previously indexed points in the same row or column. However, experiments show that this approach has its disadvantages, as described below. * E-mail: [email protected] Firstly, there is a danger of omitting some points during indexing in case of local lack of calibration points detection in a neighbourhood (e.g. caused by the presence of non-homogeneous light in the calibration scene). A particularly unfavourable situation is when the local lack of detection effects in the appearance of separated regions of detected calibration points. It is worth saying that such situations are likely to happen for calibration points situated near image borders. Such points are very important for the analysis of optical nonlinearities, and a lack of them can significantly influence the accuracy of distortion modelling. Secondly, such methods may give wrong results in the case of optical distortion with strong nonlinearities when getting information about the neighbouring index is not an easy task. Beside this, the methods are very sensitive to a single false localisation of a calibration point. Such a single false localisation can even result in false indexing of a big set of calibration points. To avoid the above-mentioned problems, we propose using a black-and-white chessboard which contains the coded index of a calibration point in the form of colour squares situated in the nearest neighbourhood of each point. The index of a certain calibration point is determined by colours of four nearest neighbouring squares (Fig.1). An order of squares in such foursome is important. Because the size of a colour square is determined only by the possibility of correct colour detection, the size of a colour square can be smaller than the size of a black or white square. The larger size of a black or white square is determined by the requirements of the exact localisation step which follows the indexing of calibration points [3]. In this step, edge information is extracted from a blackand-white chessboard. This edge information needs larger Artur Nowakowski, Wladyslaw Skarbek Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, [email protected] Received February 10, 2009; accepted March 27, 2009; published March 31, 2009 http://www.photonics.pl/PLP

Collaboration


Dive into the Tomasz Stefaniuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dariusz Pysz

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Nowak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge