Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomaz Mars is active.

Publication


Featured researches published by Tomaz Mars.


The Journal of Comparative Neurology | 2001

Differentiation of glial cells and motor neurons during the formation of neuromuscular junctions in cocultures of rat spinal cord explant and human muscle

Tomaz Mars; Kevin Yu; Xue-Ming Tang; Zoran Grubič; Franca Cambi; Michael P. King

Motor axons extending from embryonic rat spinal cord explants form fully mature neuromuscular junctions with cocultured human muscle. This degree of maturation is not observed in muscle innervated by dissociated motor neurons. Glial cells present in the spinal cord explants seem to be, besides remaining interneurons, the major difference between the two culture systems. In light of this observation and the well documented role of glia in neuronal development, it can be hypothesized that differentiated and long‐lived neuromuscular junctions form in vitro only if their formation is accompanied by codifferentiation of neuronal and glial cells and if this codifferentiation follows the spatial and temporal pattern observed in vivo. Investigation of this hypothesis necessitates the characterization of neuronal and glial cell development in spinal cord explant–muscle cocultures. No such study has been reported, although these cocultures have been used in numerous studies of neuromuscular junction formation. The aim of this work was therefore to investigate the temporal relationship between neuromuscular junction formation and the differentiation of neuronal and glial cells during the first 3 weeks of coculture, when formation and development of the neuromuscular junction occurs in vitro. The expression of stage‐specific markers of neuronal and glial differentiation in these cocultures was characterized by immunocytochemical and biochemical analyses. Differentiation of astrocytes, Schwann cells, and oligodendrocytes proceeded in concert with the differentiation of motor neurons and neuromuscular junction formation. The temporal coincidence between maturation of the neuromuscular junction and lineage progression of neurons and glial cells was similar to that observed in vivo. These findings support the hypothesis that glial cells are a major contributor to maturity of the neuromuscular junction formed in vitro in spinal cord explant–muscle cocultures. J. Comp. Neurol. 438:239–251, 2001.


European Journal of Neuroscience | 2004

Origin of acetylcholinesterase in the neuromuscular junction formed in the in vitro innervated human muscle.

Marko Jevsek; Tomaz Mars; Katarina Mis; Zoran Grubič

Synaptic basal lamina is interposed between the pre‐ and postsynaptic membrane of the neuromuscular junction (NMJ). This position permits deposition of basal lamina‐bound NMJ components of both neuronal and muscle fibre origin. One such molecule is acetylcholinesterase (AChE). The origin of NMJ AChE has been investigated previously as the answer would elucidate the relative contributions of muscle fibers and motor neurons to NMJ formation. However, in the experimental models used in prior investigations either the neuronal or muscular components of the NMJs were removed, or the NMJs were poorly differentiated. Therefore, the question of AChE origin in the intact and functional NMJ remains open. Here, we have approached this question using an in vitro model in which motor neurons, growing from embryonic rat spinal cord explants, form well differentiated NMJs with cultured human myotubes. By immunocytochemical staining with species‐specific anti‐AChE antibodies, we are able to differentiate between human (muscular) and rat (neuronal) AChE at the NMJ. We observed strong signal at the NMJ after staining with human AChE antibodies, which suggests a significant muscular AChE contribution. However, a weaker, but still clearly recognizable signal is observed after staining with rat AChE antibodies, suggesting a smaller fraction of AChE was derived from motor neurons. This is the first report demonstrating that both motor neuron and myotube contribute synaptic AChE under conditions where they interact with each other in the formation of an intact and functional NMJ.


Chemico-Biological Interactions | 2010

Acetylcholinesterase is involved in apoptosis in the precursors of human muscle regeneration

Katarina Pegan; Urška Matkovič; Tomaz Mars; Katarina Mis; Sergej Pirkmajer; Janez Brecelj; Zoran Grubič

The best established role of acetylcholinesterase (EC 3.1.1.7, AChE) is termination of neurotransmission at cholinergic synapses. However, AChE is also located at sites, where no other cholinergic components are present and there is accumulating evidence for non-cholinergic functions of this protein. In the process of skeletal muscle formation, AChE is expressed already at the stage of mononuclear myoblast, which is long before other cholinergic components can be demonstrated in this tissue. Myoblast proliferation is an essential step in muscle regeneration and is always accompanied by apoptosis. Since there are several reports demonstrating AChE participation in apoptosis one can hypothesize that early AChE expression in myoblasts reflects the development of the apoptotic apparatus in these cells. Here we tested this hypothesis by following the effect of siRNA AChE silencing on apoptotic markers and by determination of AChE level after staurosporine-induced apoptosis in cultured human myoblasts. Decreased apoptosis in siRNA AChE silenced myoblasts and increased AChE expression in staurosporine-treated myoblasts confirmed AChE involvement in apoptosis. The three AChE splice variants were differently affected by staurosporine-induced apoptosis. The hydrophobic (H) variant appeared unaffected, a tendency towards increase of tailed (T) variant was detected, however the highest, 8-fold increase was observed for readthrough (R) variant. In the light of these findings AChE appears to be a potential therapeutic target at muscle injuries including organophosphate myopathy.


The Scientific World Journal | 2013

Cytokine response of cultured skeletal muscle cells stimulated with proinflammatory factors depends on differentiation stage.

Matej Podbregar; Mitja Lainscak; Oja Prelovsek; Tomaz Mars

Myoblast proliferation and myotube formation are critical early events in skeletal muscle regeneration. The attending inflammation and cytokine signaling are involved in regulation of skeletal muscle cell proliferation and differentiation. Secretion of muscle-derived cytokines upon exposure to inflammatory factors may depend on the differentiation stage of regenerating muscle cells. Cultured human myoblasts and myotubes were exposed to 24-hour treatment with tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS). Secretion of interleukin 6 (IL-6), a major muscle-derived cytokine, and interleukin 1 (IL-1), an important regulator of inflammatory response, was measured 24 hours after termination of TNF-α or LPS treatment. Myoblasts pretreated with TNF-α or LPS displayed robustly increased IL-6 secretion during the 24-hour period after removal of treatments, while IL-1 secretion remained unaltered. IL-6 secretion was also increased in myotubes, but the response was less pronounced compared with myoblasts. In contrast to myoblasts, IL-1 secretion was markedly stimulated in LPS-pretreated myotubes. We demonstrate that preceding exposure to inflammatory factors stimulates a prolonged upregulation of muscle-derived IL-6 and/or IL-1 in cultured skeletal muscle cells. Our findings also indicate that cytokine response to inflammatory factors in regenerating skeletal muscle partially depends on the differentiation stage of myogenic cells.


Anesthesia & Analgesia | 2014

Dexamethasone produces dose-dependent inhibition of sugammadex reversal in in vitro innervated primary human muscle cells.

Katja Rezonja; Maja Sostaric; Gaj Vidmar; Tomaz Mars

BACKGROUND:Corticosteroids are frequently used during anesthesia to provide substitution therapy in patients with adrenal insufficiency, as a first-line treatment of several life-threatening conditions, to prevent postoperative nausea and vomiting, and as a component of multimodal analgesia. For these last 2 indications, dexamethasone is most frequently used. Due to the structural resemblance between aminosteroid muscle relaxants and dexamethasone, concerns have been raised about possible corticosteroid inhibition in the reversal of neuromuscular block by sugammadex. We thus investigated the influence of dexamethasone on sugammadex reversal of rocuronium-induced neuromuscular block, which could be relevant in certain clinical situations. METHODS:The unique co-culture model of human muscle cells innervated in vitro with rat embryonic spinal cord explants to form functional neuromuscular junctions was first used to explore the effects of 4 and 10 &mgr;M rocuronium on muscle contractions, as quantitatively evaluated by counting contraction units in contraction-positive explant co-cultures. Next, equimolar and 3-fold equimolar sugammadex was used to investigate the recovery of contractions from 4 and 10 &mgr;M rocuronium block. Finally, 1, 100, and 10 &mgr;M dexamethasone (normal, elevated, and high clinical levels) were used to evaluate any effects on the reversal of rocuronium-induced neuromuscular block by sugammadex. RESULTS:Seventy-eight explant co-cultures from 3 time-independent experiments were included, where the number of contractions increased to 10 days of co-culturing. Rocuronium showed a time-dependent effect on depth of neuromuscular block (4 &mgr;M rocuronium: baseline, 10, 20 minutes administration; P < 0.0001), while the dose-dependent effect was close to nominal statistical significance (4, 10 &mgr;M; P = 0.080). This was reversed by equimolar concentrations of sugammadex, with further and virtually complete recovery of contractions with 3-fold equimolar sugammadex (P < 0.0001). Dexamethasone diminished 10 &mgr;M sugammadex-induced recovery of contractions from rocuronium-induced neuromuscular block in a dose-dependent manner (P = 0.026) with a higher sugammadex concentration (30 &mgr;M) being close to statistically significantly improving recovery (P = 0.065). The highest concentration of dexamethasone decreased the recovery of contractions by equimolar sugammadex by 26%; this effect was more pronounced when 3-fold equimolar (30 &mgr;M) sugammadex was used for reversal (48%). CONCLUSIONS:This is the first report in which the effects of rocuronium and sugammadex interactions with dexamethasone have been studied in a highly accessible in vitro experimental model of functionally innervated human muscle cells. Sugammadex reverses rocuronium-induced neuromuscular block; however, concomitant addition of high dexamethasone concentrations diminishes the efficiency of sugammadex. Further studies are required to determine the clinical relevance of these interactions.


Journal of Histochemistry and Cytochemistry | 2003

Localization of mRNAs encoding acetylcholinesterase and butyrylcholinesterase in the rat spinal cord by nonradioactive in situ hybridization.

Katarina Mis; Tomaz Mars; Marko Jevsek; Martina Brank; Katarina Zajc–Kreft; Zoran Grubič

In spite of intensive investigations, the roles of acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BuChE; EC 3.1.1.8) in the central nervous system (CNS) remain unclear. A role recently proposed for BuChE as an explanation for survival of AChE knockout mice is compensation for AChE activity if it becomes insufficient. Neuronal contribution of both enzymes to the cholinesterase pool in the neuromuscular junction has also been suggested. These proposals imply that BuChE expression follows that of AChE and that, in addition to AChE, BuChE is also expressed in α-motor neurons. However, these assumptions have not yet been properly tested. Histochemical approaches to these problems have been hampered by a number of problems that prevent unambiguous interpretation of results. In situ hybridization (ISH) of mRNAs encoding AChE and BuChE, which is the state-of-the-art approach, has not yet been done. Here we describe rapid nonradioactive ISH for the localization of mRNAs encoding AChE and BuChE. Various probes and experimental conditions had been tested to obtain reliable localization. In combination with RT-PCR, ISH revealed that, in rat spinal cord, cells expressing AChE mRNA also express BuChE mRNA but in smaller quantities. α-Motor neurons had the highest levels of both mRNAs. Virtual absence of transcripts encoding AChE and BuChE in glia might reflect a discrepancy between mRNA and enzyme levels previously reported for cholinesterases.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

HIF-1α Response to Hypoxia is Functionally Separated from the Glucocorticoid Stress Response in the in vitro Regenerating Human Skeletal Muscle

Sergej Pirkmajer; Dragana Filipovic; Tomaz Mars; Katarina Mis; Zoran Grubič

Injury of skeletal muscle is followed by muscle regeneration in which new muscle tissue is formed from the proliferating mononuclear myoblasts, and by systemic response to stress that exposes proliferating myoblasts to increased glucocorticoid (GC) concentration. Because of its various causes, hypoxia is a frequent condition affecting skeletal muscle, and therefore both processes, which importantly determine the outcome of the injury, often proceed under hypoxic conditions. It is therefore important to identify and characterize in proliferating human myoblasts: 1) response to hypoxia which is generally organized by hypoxia-inducible factor-1α (HIF-1α); 2) response to GCs which is mediated through the isoforms of glucocorticoid receptors (GRs) and 11β-hydroxysteroid dehydrogenases (11β-HSDs), and 3) the response to GCs under the hypoxic conditions and the influence of this combination on the factors controlling myoblast proliferation. Using real-time PCR, Western blotting, and HIF-1α small-interfering RNA silencing, we demonstrated that cultured human myoblasts possess both, the HIF-1α-based response to hypoxia, and the GC response system composed of GRα and types 1 and 2 11β-HSDs. However, using combined dexamethasone and hypoxia treatments, we demonstrated that these two systems operate practically without mutual interactions. A seemingly surprising separation of the two systems that both organize response to hypoxic stress can be explained on the evolutionary basis: the phylogenetically older HIF-1α response is a protection at the cellular level, whereas the GC stress response protects the organism as a whole. This necessitates actions, like downregulation of IL-6 secretion and vascular endothelial growth factor, that might not be of direct benefit for the affected myoblasts.


Neuroscience Letters | 2013

Opposing effects of dexamethasone, agrin and sugammadex on functional innervation and constitutive secretion of IL-6 in in vitro innervated primary human muscle cells

K. Rezonja; P. Lorenzon; Tomaz Mars

Neuromuscular junction development is the key process required for successful neuromuscular transmission and functional innervation of skeletal muscle fibres. Various substances can influence these processes, some of which are in common use in clinical practice. In the present study, the effects of the potentially new therapeutic agent agrin were followed, along with the widely used glucocorticoid dexamethasone. The in vitro experimental model used was functional innervation and constitutive interleukin 6 (IL-6) secretion of human muscle cells. Additionally, the selective relaxant binding agent sugammadex and its possible interaction with dexamethasone were followed. Dexamethasone impaired functional innervation while agrin had opposing effects. Furthermore, based on interference with IL-6 secretion, we show potential (chemical) interactions between dexamethasone and sugammadex. The physiological effects of this interaction should be taken into consideration under clinical conditions where these two drugs might be applied simultaneously.


Chemico-Biological Interactions | 2013

Acetylcholinesterase and agrin: different functions, similar expression patterns, multiple roles.

Katarina Mis; Urška Matkovič; Sergej Pirkmajer; Marina Sciancalepore; Paola Lorenzon; Tomaz Mars; Zoran Grubič

Acetylcholinesterase (AChE) and agrin play unique functional roles in the neuromuscular junction (NMJ). AChE is a cholinergic and agrin a synaptogenetic component. In spite of their different functions, they share several common features: their targeting is determined by alternative splicing; unlike most other NMJ components they are expressed in both, muscle and motor neuron and both reside on the synaptic basal lamina of the NMJ. Also, both were reported to play various nonjunctional roles. However, while the origin of basal lamina bound agrin is undoubtedly neural, the neural origin of AChE, which is anchored to the basal lamina with collagenic tail ColQ, is elusive. Hypothesizing that motor neuron proteins targeted to the NMJ basal lamina share common temporal pattern of expression, which is coordinated with the formation of basal lamina, we compared expression of agrin isoforms with the expression of AChE-T and ColQ in the developing rat spinal cord at the stages before and after the formation of NMJ basal lamina. Cellular origin of AChE-T and agrin was determined by in situ hybridization and their quantitative levels by RT PCR. We found parallel increase in expression of the synaptogenetic (agrin 8) isoform of agrin and ColQ after the formation of basal lamina supporting the view that ColQ bound AChE and agrin 8 isoform are destined to the basal lamina. Catalytic AChE-T subunit and agrin isoforms 19 and 0 followed different expression patterns. In accordance with the reports of other authors, our investigations also revealed various alternative functions for AChE and agrin. We have already demonstrated participation of AChE in myoblast apoptosis; here we present the evidence that agrin promotes the maturation of heavy myosin chains and the excitation-contraction coupling. These results show that common features of AChE and agrin extend to their capacity to play multiple roles in muscle development.


Radiology and Oncology | 2013

EFFECT OF IONIZING RADIATION ON HUMAN SKELETAL MUSCLE PRECURSOR CELLS

Mihaela Jurdana; Maja Cemazar; Katarina Pegan; Tomaz Mars

Abstract Background. Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Materials and methods. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin - 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Results. Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Conclusions. Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions.

Collaboration


Dive into the Tomaz Mars's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katarina Mis

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Marko Jevsek

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matej Podbregar

University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge