Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zoran Grubič is active.

Publication


Featured researches published by Zoran Grubič.


The Journal of Comparative Neurology | 2001

Differentiation of glial cells and motor neurons during the formation of neuromuscular junctions in cocultures of rat spinal cord explant and human muscle

Tomaz Mars; Kevin Yu; Xue-Ming Tang; Zoran Grubič; Franca Cambi; Michael P. King

Motor axons extending from embryonic rat spinal cord explants form fully mature neuromuscular junctions with cocultured human muscle. This degree of maturation is not observed in muscle innervated by dissociated motor neurons. Glial cells present in the spinal cord explants seem to be, besides remaining interneurons, the major difference between the two culture systems. In light of this observation and the well documented role of glia in neuronal development, it can be hypothesized that differentiated and long‐lived neuromuscular junctions form in vitro only if their formation is accompanied by codifferentiation of neuronal and glial cells and if this codifferentiation follows the spatial and temporal pattern observed in vivo. Investigation of this hypothesis necessitates the characterization of neuronal and glial cell development in spinal cord explant–muscle cocultures. No such study has been reported, although these cocultures have been used in numerous studies of neuromuscular junction formation. The aim of this work was therefore to investigate the temporal relationship between neuromuscular junction formation and the differentiation of neuronal and glial cells during the first 3 weeks of coculture, when formation and development of the neuromuscular junction occurs in vitro. The expression of stage‐specific markers of neuronal and glial differentiation in these cocultures was characterized by immunocytochemical and biochemical analyses. Differentiation of astrocytes, Schwann cells, and oligodendrocytes proceeded in concert with the differentiation of motor neurons and neuromuscular junction formation. The temporal coincidence between maturation of the neuromuscular junction and lineage progression of neurons and glial cells was similar to that observed in vivo. These findings support the hypothesis that glial cells are a major contributor to maturity of the neuromuscular junction formed in vitro in spinal cord explant–muscle cocultures. J. Comp. Neurol. 438:239–251, 2001.


Neuron | 1995

Myoblast fusion and innervation with rat motor nerve alter distribution of acetylcholinesterase and its mRNA in cultures of human muscle

Zoran Grubič; Rado Komel; Winsome F Walker

To elucidate the mechanisms underlying acetylcholinesterase (AChE) localization, we analyzed the distribution of AChE and Ache mRNA during myogenesis in cocultures of human muscle and fetal rat spinal cord. We observed a temporal coincidence in alterations of AChE localization and nuclei expressing the message, suggesting developmental regulation at the mRNA level. Nonuniform mRNA staining among nuclei suggests asynchronous regulation, also supporting an earlier proposal that transcription proceeds intermittently. Asynchrony seems to be overridden by generally acting factors during myoblast fusion, when message is up-regulated, and at the onset of muscle contractions, when it becomes restricted to some nuclei in the junctional region and focal patches of AChE appear near nerve contacts. Coincidence of mRNA down-regulation and synthesis of stable basal lamina-bound AChE suggests coordinated adaptation, so that sufficient enzyme may be derived from low message levels.


Neuroscience | 2003

Functional innervation of cultured human skeletal muscle proceeds by two modes with regard to agrin effects

Tomaž Marš; Michael P. King; W.F Walker; Katarina Mis; Zoran Grubič

Nerve-derived agrin is a specific isoform of agrin that promotes clustering of nicotinic acetylcholine receptors (AChR) and other components of the neuromuscular junction (NMJ). We investigated the effects of agrin on functional maturation of NMJs at the early stages of synaptogenesis in human muscle. Specifically, we assessed the importance of agrin for the differentiation of developing NMJs to the stage where they are able to transmit signals that result in contractions of myotubes. We utilized an in vitro model in which human myotubes are innervated by neurons extending from spinal cord explants of fetal rat. This model is suitable for functional studies because all muscle contractions are the result of neuromuscular transmission and can be quantitated. An anti-agrin antibody, Agr 33, was applied to co-cultures during de novo NMJ formation. Quantitative analyses demonstrated that Agr 33 reduced the number of AChR clusters to 20% and their long axes to 50% of control, yet still permitted early, NMJ-mediated muscle contractions that are normally observed in 7-10-day-old co-cultures. However, at later times of development, the same treatment completely prevented the increase in the number of contracting units as compared with untreated co-cultures. It is concluded that there are two modes of functional maturation of NMJs with regard to agrin effects: one that is insensitive and the other that is sensitive to agrin blockade. Agrin-insensitive mode is limited to the small population of NMJs that become functional at the earlier stages of functional innervation. However, most of the NMJs become contraction-competent at the later stages of the innervation process. These NMJs become functional only if agrin action is uncompromised. This is the first characterization of the contribution of agrin to NMJ development on human muscle.


European Journal of Neuroscience | 2004

Origin of acetylcholinesterase in the neuromuscular junction formed in the in vitro innervated human muscle.

Marko Jevsek; Tomaz Mars; Katarina Mis; Zoran Grubič

Synaptic basal lamina is interposed between the pre‐ and postsynaptic membrane of the neuromuscular junction (NMJ). This position permits deposition of basal lamina‐bound NMJ components of both neuronal and muscle fibre origin. One such molecule is acetylcholinesterase (AChE). The origin of NMJ AChE has been investigated previously as the answer would elucidate the relative contributions of muscle fibers and motor neurons to NMJ formation. However, in the experimental models used in prior investigations either the neuronal or muscular components of the NMJs were removed, or the NMJs were poorly differentiated. Therefore, the question of AChE origin in the intact and functional NMJ remains open. Here, we have approached this question using an in vitro model in which motor neurons, growing from embryonic rat spinal cord explants, form well differentiated NMJs with cultured human myotubes. By immunocytochemical staining with species‐specific anti‐AChE antibodies, we are able to differentiate between human (muscular) and rat (neuronal) AChE at the NMJ. We observed strong signal at the NMJ after staining with human AChE antibodies, which suggests a significant muscular AChE contribution. However, a weaker, but still clearly recognizable signal is observed after staining with rat AChE antibodies, suggesting a smaller fraction of AChE was derived from motor neurons. This is the first report demonstrating that both motor neuron and myotube contribute synaptic AChE under conditions where they interact with each other in the formation of an intact and functional NMJ.


Chemico-Biological Interactions | 2010

Acetylcholinesterase is involved in apoptosis in the precursors of human muscle regeneration

Katarina Pegan; Urška Matkovič; Tomaz Mars; Katarina Mis; Sergej Pirkmajer; Janez Brecelj; Zoran Grubič

The best established role of acetylcholinesterase (EC 3.1.1.7, AChE) is termination of neurotransmission at cholinergic synapses. However, AChE is also located at sites, where no other cholinergic components are present and there is accumulating evidence for non-cholinergic functions of this protein. In the process of skeletal muscle formation, AChE is expressed already at the stage of mononuclear myoblast, which is long before other cholinergic components can be demonstrated in this tissue. Myoblast proliferation is an essential step in muscle regeneration and is always accompanied by apoptosis. Since there are several reports demonstrating AChE participation in apoptosis one can hypothesize that early AChE expression in myoblasts reflects the development of the apoptotic apparatus in these cells. Here we tested this hypothesis by following the effect of siRNA AChE silencing on apoptotic markers and by determination of AChE level after staurosporine-induced apoptosis in cultured human myoblasts. Decreased apoptosis in siRNA AChE silenced myoblasts and increased AChE expression in staurosporine-treated myoblasts confirmed AChE involvement in apoptosis. The three AChE splice variants were differently affected by staurosporine-induced apoptosis. The hydrophobic (H) variant appeared unaffected, a tendency towards increase of tailed (T) variant was detected, however the highest, 8-fold increase was observed for readthrough (R) variant. In the light of these findings AChE appears to be a potential therapeutic target at muscle injuries including organophosphate myopathy.


Archives of Toxicology | 1988

Iso-OMPA-induced potentiation of soman toxicity in rat correlates with the inhibition of plasma carboxylesterases

Zoran Grubič; Dušan Sket; Miro Brzin

Recently, the question was raised as to why iso-OMPA, generally known as a selective irreversible inhibitor of butyrylcholinesterase (BuChE), potentiates soman toxicity in rats but not in mice. Mice are known to have higher carboxylesterase (CarbE) and lower BuChE activity in plasma than rat. It could be hypothesized that it is the iso-OMPA inhibition of plasma CarbE, and not of BuChE, which is responsible for potentiation of soman toxicity in iso-OMPA-pretreated rats. In order to test this hypothesis two doses of iso-OMPA were administered to rats prior to soman. The two doses were selected in such a way that both were high enough to inhibit more than 90% of plasma BuChE activity; plasma CarbE activity, however, was only slightly inhibited by the lower and substantially by the higher dose of iso-OMPA. Our results demonstrate that iso-OMPA-induced potentiation of soman toxicity correlates with the inhibition of CarbE and not with the inhibition of BuChE activity in rat plasma. Relative resistance of mice to iso-OMPA-induced potentiation of soman toxicity could therefore be explained by a higher proportion of CarbE activity remaining uninhibited after iso-OMPA pretreatment. By having their active centers unoccupied, CarbE molecules can bind soman and reduce its concentration in neuronal tissue and motor end-plates.


Archives of Toxicology | 1989

Mechanism of action of HI-6 on soman inhibition of acetylcholinesterase in preparations of rat and human skeletal muscle; comparison to SAD-128 and PAM-2.

Zoran Grubič; Anton Tomažič

HI-6 is presently considered the most potent oxime antidote against soman poisoning in mice, rats, dogs and monkeys. However, it is still an open question whether efficiency of HI-6, observed in experimental animals, can be extrapolated to soman intoxicated humans. In this paper efficiency of HI-6 and possible mechanisms of action were compared in rat and human fresh muscle preparations. In rat muscle, about 50% of control AChE activity could be recovered by both therapeutic (5 min after soman) and prophylactic (5 min before soman) application of HI-6. On the other hand, in human muscle therapeutic treatment restored only 5%, while prophylactic application of HI-6 again resulted in about 50% recovery of control AChE activity. As revealed by comparison of the prophylactic effects of HI-6 and the non-oxime bispyridinium compound SAD-128, competitive inhibition of AChE plays a minor role as a protective mechanism. Immediate reactivation of rapidly aging human AChE must therefore be instituted for successful protective treatment by HI-6. Retardation of aging, a direct effect of SAD-128, was roughly estimated to improve reactivation by HI-6 for about 10% of control AChE activity of the human muscle. PAM-2 proved completely inefficient as a therapeutic and as a prophylactic agent on both rat and human muscle preparations.


Journal of Molecular Neuroscience | 2006

Expression of MuSK in in vitro-innervated human muscle

Nina Gajsek; Marko Jevsek; Zoran Grubič

Unlike rodent or avian muscle, which forms clusters of acetylcholine receptors (AChRs) on its surface, exhibits cross striations, and contracts spontaneously even if cultured in the absence of the nerve, human muscle must be innervated to reach such differentiation level under in vitro conditions (Kobayashi and Askanas, 1985; Mars et al., 2001). Because it is known that AChR clustering and other aspects of neuromuscular junction (NMJ) formation necessitate the activation of muscle-specific kinase (MuSK), one explanation of this inability of human muscle is that it has no MuSK or that it cannot be activated in the absence of the nerve. To test this hypothesis we analyzed cultured human muscle for the expression of MuSK at two stages of differentiation: postfusion myotube and innervated, contracting myotube. Analyses were carried out at the mRNA level, as no reliable anti-MuSK antibodies are available for the immunocytochemical demonstration of MuSK in cultured human muscle. The presence of MuSK, however, can be tested indirectly, as it can be activated in the absence of the nerve simply by growing muscle culture on laminin coating (Kummer et al., 2004). In the second part of our study, we therefore tested human myotubes for the presence and activation of MuSK by exposing them to laminin coating and by analyzing them afterwards for the areas of postsynaptic differentiation typical for NMJ formation.


Journal of Histochemistry and Cytochemistry | 2003

Localization of mRNAs encoding acetylcholinesterase and butyrylcholinesterase in the rat spinal cord by nonradioactive in situ hybridization.

Katarina Mis; Tomaz Mars; Marko Jevsek; Martina Brank; Katarina Zajc–Kreft; Zoran Grubič

In spite of intensive investigations, the roles of acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BuChE; EC 3.1.1.8) in the central nervous system (CNS) remain unclear. A role recently proposed for BuChE as an explanation for survival of AChE knockout mice is compensation for AChE activity if it becomes insufficient. Neuronal contribution of both enzymes to the cholinesterase pool in the neuromuscular junction has also been suggested. These proposals imply that BuChE expression follows that of AChE and that, in addition to AChE, BuChE is also expressed in α-motor neurons. However, these assumptions have not yet been properly tested. Histochemical approaches to these problems have been hampered by a number of problems that prevent unambiguous interpretation of results. In situ hybridization (ISH) of mRNAs encoding AChE and BuChE, which is the state-of-the-art approach, has not yet been done. Here we describe rapid nonradioactive ISH for the localization of mRNAs encoding AChE and BuChE. Various probes and experimental conditions had been tested to obtain reliable localization. In combination with RT-PCR, ISH revealed that, in rat spinal cord, cells expressing AChE mRNA also express BuChE mRNA but in smaller quantities. α-Motor neurons had the highest levels of both mRNAs. Virtual absence of transcripts encoding AChE and BuChE in glia might reflect a discrepancy between mRNA and enzyme levels previously reported for cholinesterases.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

HIF-1α Response to Hypoxia is Functionally Separated from the Glucocorticoid Stress Response in the in vitro Regenerating Human Skeletal Muscle

Sergej Pirkmajer; Dragana Filipovic; Tomaz Mars; Katarina Mis; Zoran Grubič

Injury of skeletal muscle is followed by muscle regeneration in which new muscle tissue is formed from the proliferating mononuclear myoblasts, and by systemic response to stress that exposes proliferating myoblasts to increased glucocorticoid (GC) concentration. Because of its various causes, hypoxia is a frequent condition affecting skeletal muscle, and therefore both processes, which importantly determine the outcome of the injury, often proceed under hypoxic conditions. It is therefore important to identify and characterize in proliferating human myoblasts: 1) response to hypoxia which is generally organized by hypoxia-inducible factor-1α (HIF-1α); 2) response to GCs which is mediated through the isoforms of glucocorticoid receptors (GRs) and 11β-hydroxysteroid dehydrogenases (11β-HSDs), and 3) the response to GCs under the hypoxic conditions and the influence of this combination on the factors controlling myoblast proliferation. Using real-time PCR, Western blotting, and HIF-1α small-interfering RNA silencing, we demonstrated that cultured human myoblasts possess both, the HIF-1α-based response to hypoxia, and the GC response system composed of GRα and types 1 and 2 11β-HSDs. However, using combined dexamethasone and hypoxia treatments, we demonstrated that these two systems operate practically without mutual interactions. A seemingly surprising separation of the two systems that both organize response to hypoxic stress can be explained on the evolutionary basis: the phylogenetically older HIF-1α response is a protection at the cellular level, whereas the GC stress response protects the organism as a whole. This necessitates actions, like downregulation of IL-6 secretion and vascular endothelial growth factor, that might not be of direct benefit for the affected myoblasts.

Collaboration


Dive into the Zoran Grubič's collaboration.

Top Co-Authors

Avatar

Tomaz Mars

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Katarina Mis

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Marko Jevsek

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomaž Marš

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miro Brzin

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Rado Komel

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge