Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tommi S. Jaakkola is active.

Publication


Featured researches published by Tommi S. Jaakkola.


Machine Learning | 1999

An Introduction to Variational Methods for Graphical Models

Michael I. Jordan; Zoubin Ghahramani; Tommi S. Jaakkola; Lawrence K. Saul

This paper presents a tutorial introduction to the use of variational methods for inference and learning in graphical models (Bayesian networks and Markov random fields). We present a number of examples of graphical models, including the QMR-DT database, the sigmoid belief network, the Boltzmann machine, and several variants of hidden Markov models, in which it is infeasible to run exact inference algorithms. We then introduce variational methods, which exploit laws of large numbers to transform the original graphical model into a simplified graphical model in which inference is efficient. Inference in the simpified model provides bounds on probabilities of interest in the original model. We describe a general framework for generating variational transformations based on convex duality. Finally we return to the examples and demonstrate how variational algorithms can be formulated in each case.


Cell | 2001

Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle

Itamar Simon; John D. Barnett; Nancy M. Hannett; Christopher T. Harbison; Nicola J. Rinaldi; Thomas L. Volkert; John J. Wyrick; Julia Zeitlinger; David K. Gifford; Tommi S. Jaakkola; Richard A. Young

Genome-wide location analysis was used to determine how the yeast cell cycle gene expression program is regulated by each of the nine known cell cycle transcriptional activators. We found that cell cycle transcriptional activators that function during one stage of the cell cycle regulate transcriptional activators that function during the next stage. This serial regulation of transcriptional activators forms a connected regulatory network that is itself a cycle. Our results also reveal how the nine transcriptional regulators coordinately regulate global gene expression and diverse stage-specific functions to produce a continuous cycle of cellular events. This information forms the foundation for a complete map of the transcriptional regulatory network that controls the cell cycle.


IEEE Transactions on Information Theory | 2005

MAP estimation via agreement on trees: message-passing and linear programming

Martin J. Wainwright; Tommi S. Jaakkola; Alan S. Willsky

We develop and analyze methods for computing provably optimal maximum a posteriori probability (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of tree-structured distributions, we obtain an upper bound on the optimal value of the original problem (i.e., the log probability of the MAP assignment) in terms of the combined optimal values of the tree problems. We prove that this upper bound is tight if and only if all the tree distributions share an optimal configuration in common. An important implication is that any such shared configuration must also be a MAP configuration for the original distribution. Next we develop two approaches to attempting to obtain tight upper bounds: a) a tree-relaxed linear program (LP), which is derived from the Lagrangian dual of the upper bounds; and b) a tree-reweighted max-product message-passing algorithm that is related to but distinct from the max-product algorithm. In this way, we establish a connection between a certain LP relaxation of the mode-finding problem and a reweighted form of the max-product (min-sum) message-passing algorithm.


Journal of Computational Biology | 2000

A Discriminative Framework for Detecting Remote Protein Homologies

Tommi S. Jaakkola; Mark Diekhans; David Haussler

A new method for detecting remote protein homologies is introduced and shown to perform well in classifying protein domains by SCOP superfamily. The method is a variant of support vector machines using a new kernel function. The kernel function is derived from a generative statistical model for a protein family, in this case a hidden Markov model. This general approach of combining generative models like HMMs with discriminative methods such as support vector machines may have applications in other areas of biosequence analysis as well.


neural information processing systems | 1993

Convergence of Stochastic Iterative Dynamic Programming Algorithms

Tommi S. Jaakkola; Michael I. Jordan; Satinder P. Singh

Recent developments in the area of reinforcement learning have yielded a number of new algorithms for the prediction and control of Markovian environments. These algorithms, including the TD() algorithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as approximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approximation theory via a new convergence theorem. The theorem establishes a general class of convergent algorithms to which both TD() and Q-learning belong.


Statistics and Computing | 2000

Bayesian parameter estimation via variational methods

Tommi S. Jaakkola; Michael I. Jordan

We consider a logistic regression model with a Gaussian prior distribution over the parameters. We show that an accurate variational transformation can be used to obtain a closed form approximation to the posterior distribution of the parameters thereby yielding an approximate posterior predictive model. This approach is readily extended to binary graphical model with complete observations. For graphical models with incomplete observations we utilize an additional variational transformation and again obtain a closed form approximation to the posterior. Finally, we show that the dual of the regression problem gives a latent variable density model, the variational formulation of which leads to exactly solvable EM updates.


Machine Learning | 2000

Convergence Results for Single-Step On-PolicyReinforcement-Learning Algorithms

Satinder P. Singh; Tommi S. Jaakkola; Michael L. Littman; Csaba Szepesvári

An important application of reinforcement learning (RL) is to finite-state control problems and one of the most difficult problems in learning for control is balancing the exploration/exploitation tradeoff. Existing theoretical results for RL give very little guidance on reasonable ways to perform exploration. In this paper, we examine the convergence of single-step on-policy RL algorithms for control. On-policy algorithms cannot separate exploration from learning and therefore must confront the exploration problem directly. We prove convergence results for several related on-policy algorithms with both decaying exploration and persistent exploration. We also provide examples of exploration strategies that can be followed during learning that result in convergence to both optimal values and optimal policies.


pacific symposium on biocomputing | 2000

Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks.

Alexander J. Hartemink; David K. Gifford; Tommi S. Jaakkola; Richard A. Young

We propose a model-driven approach for analyzing genomic expression data that permits genetic regulatory networks to be represented in a biologically interpretable computational form. Our models permit latent variables capturing unobserved factors, describe arbitrarily complex (more than pair-wise) relationships at varying levels of refinement, and can be scored rigorously against observational data. The models that we use are based on Bayesian networks and their extensions. As a demonstration of this approach, we utilize 52 genomes worth of Affymetrix GeneChip expression data to correctly differentiate between alternative hypotheses of the galactose regulatory network in S. cerevisiae. When we extend the graph semantics to permit annotated edges, we are able to score models describing relationships at a finer degree of specification.


IEEE Transactions on Information Theory | 2005

A new class of upper bounds on the log partition function

Martin J. Wainwright; Tommi S. Jaakkola; Alan S. Willsky

We introduce a new class of upper bounds on the log partition function of a Markov random field (MRF). This quantity plays an important role in various contexts, including approximating marginal distributions, parameter estimation, combinatorial enumeration, statistical decision theory, and large-deviations bounds. Our derivation is based on concepts from convex duality and information geometry: in particular, it exploits mixtures of distributions in the exponential domain, and the Legendre mapping between exponential and mean parameters. In the special case of convex combinations of tree-structured distributions, we obtain a family of variational problems, similar to the Bethe variational problem, but distinguished by the following desirable properties: i) they are convex, and have a unique global optimum; and ii) the optimum gives an upper bound on the log partition function. This optimum is defined by stationary conditions very similar to those defining fixed points of the sum-product algorithm, or more generally, any local optimum of the Bethe variational problem. As with sum-product fixed points, the elements of the optimizing argument can be used as approximations to the marginals of the original model. The analysis extends naturally to convex combinations of hypertree-structured distributions, thereby establishing links to Kikuchi approximations and variants.


pacific symposium on biocomputing | 2001

Combining location and expression data for principled discovery of genetic regulatory network models.

Alexander J. Hartemink; David K. Gifford; Tommi S. Jaakkola; Richard A. Young

We develop principled methods for the automatic induction (discovery) of genetic regulatory network models from multiple data sources and data modalities. Models of regulatory networks are represented as Bayesian networks, allowing the models to compactly and robustly capture probabilistic multivariate statistical dependencies between the various cellular factors in these networks. We build on previous Bayesian network validation results by extending the validation framework to the context of model induction, leveraging heuristic simulated annealing search algorithms and posterior model averaging. Using expression data in isolation yields results inconsistent with location data so we incorporate genomic location data to guide the model induction process. We combine these two data modalities by allowing location data to influence the model prior and expression data to influence the model likelihood. We demonstrate the utility of this approach by discovering genetic regulatory models of thirty-three variables involved in S. cerevisiae pheromone response. The models we automatically generate are consistent with the current understanding regarding this regulatory network, but also suggest new directions for future experimental investigation.

Collaboration


Dive into the Tommi S. Jaakkola's collaboration.

Top Co-Authors

Avatar

David K. Gifford

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Regina Barzilay

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan S. Willsky

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amir Globerson

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Lei

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David Alvarez-Melis

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge