Tommy Asferg
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tommy Asferg.
Wildlife Biology | 2014
Peter Sunde; Tommy Asferg
Manipulating hunting season length is often used as a population management tool but the effects of these changes on total harvest have rarely been studied. We modelled relative changes in national annual bag size as a function of relative change in hunting season length in 63 cases involving 28 species in Denmark (1957–2007). The duration of the hunting season, initially lasting 30–365 days, was modified to 39–204% of the former length. The undifferentiated effect of season length change on bag size change (all 63 cases) was not statistically significant (b = 0.16, 95%CI: -0.04–0.36), with a 10% (95%CI: -3–22%) predicted decrease in bag size upon a 50% reduction of season length. However, the functional relationship between the relative change in bag size and the change in season length differed between sedentary and non-sedentary species and interacted with the motivation behind changing season length (population management/ethical/other). In non-sedentary species, changes in bag size correlated positively with changes in season length (overall response: b = 0.54, 95%CI: 0.14–0.95): reducing the hunting season to 50% of its initial length would on average result in a 31% reduction (95% CI: 9–48%) of total bag size. This overall effect interacted with the motivation for season length changes, being strongest for ‘other reasons’ (mainly harmonization of hunting periods for related species) but was absent when seasons were changed for reasons of ‘population management’. In sedentary species, changes in season length had no effect on bag size. Our results suggest that manipulating hunting seasons of duration ≥ 1 month by less than 50% is generally inefficient as a means of predictably changing harvest rates. This may be because recreational hunters either invest a fixed effort or aim for a specific yield within a given season, neither strategy being affected by changes in hunting seasons.
Wildlife Biology | 2004
Thomas Bach Møller; Cino Pertoldi; Aksel Bo Madsen; Tommy Asferg; Jane Frydenberg; Mette Hammershøj; Volker Loeschcke
Genetic variability and population structure was investigated in 83 European polecats Mustela putorius by means of six microsatellite markers. The samples came from two areas in Denmark, Østjylland and Thy, which are separated by the Limfjord. The genetic diversity (He = 0.583) found in the total sample was similar to those found in other mustelid species and carnivores in general. A heterozygote deficiency, probably due to a Wahlund effect, suggested a further substructuring of the Danish sample. Population genetic substructuring was investigated in three different ways: by means of the program STRUCTURE, Wrights F-statistics and by an assignment test. All the tests indicate a subdivision of the sample into two distinct groups, which is concordant with the two sampling locations, with an average genetic divergence of FST = 0.126 and RST = 0.1692. The higher genetic diversity found in the Thy population (He = 0.578), as compared to the Østjylland population (He = 0.420), could be explained by assuming two ancient waves of colonisation of the Danish peninsula. Tests for recent bottlenecks were conducted, and the results suggest no evidence of neither population decline nor expansion. Our study is the first one in which microsatellite markers are used on polecat samples, and one locus (mv54) was found to be diagnostic in distinguishing between American mink Mustela vison and European polecat.
Wildlife Biology | 2015
Johnny Kahlert; Anthony D. Fox; Henning Heldbjerg; Tommy Asferg; Peter Sunde
Harvest records are often assumed to offer an indirect measure of population abundance in huntable species. However, this requires population density changes are reflected in comparable linear changes in harvest rates. We tested this assumption for common snipe Gallinago gallinago, common wood pigeon Columba palumbus, coot Fulica atra, grey partridge Perdix perdix, roe deer Capreolus capreolus and brown hare Lepus europaeus in Denmark. If we consider hunting a form of predator—prey interaction, the annual kill can be viewed as a predator functional response to prey population size. Convergence of the annual kill to a type I functional response with similar auto-correlative structures in the harvest and count data would support the hypothesis that fluctuations in harvest and population abundance occurred with similar periodicity. The annual kill of common snipe showed the best fit to a type I functional response to the point count indices, with similar auto-correlative structures in the two variables. Other species showed different functional responses, the result of hunter behaviour, such as voluntary hunting restraint on species of concern and saturation effects from rapidly expanding abundant species. Relationships between the annual kill and population abundance were complex and incorporation of hunting legislation changes improved optimal model fits between harvest statistics and count data. Consideration of the validity of the underlying assumptions is necessary before harvest records are used as an index for population size. It is essential that detectability/accessibility of a species does not change systematically over time. Such bias may derive from habitat shifts, difference in timing of counts and hunting harvest, changes in migration patterns and annual reproduction and mortality. We recommend the continued collation of hunting harvest statistics, supported by sociological studies, to provide insight into the mechanisms that affect the hunting effort, to understand relationships between harvest statistics and population abundance.
PLOS ONE | 2013
Christos Iacovakis; Zissis Mamuris; Katerina A. Moutou; Antonia Touloudi; Anne Sofie Hammer; George Valiakos; Themis Giannoulis; Costas Stamatis; Vassiliki Spyrou; Labrini V. Athanasiou; Maria C Kantere; Tommy Asferg; Alexios Giannakopoulos; Charlotte Mark Salomonsen; Dimitrios P. Bogdanos; Periklis K. Birtsas; Liljana Petrovska; Charalambos Billinis
A study was conducted in order to determine the occurrence of European Brown Hare Syndrome virus (EBHSV) in Denmark and possible relation between disease pathogenesis and Major Histocompatibility Complex (MHC) host genotype. Liver samples were examined from 170 brown hares (hunted, found sick or dead), collected between 2004 and 2009. Macroscopical and histopathological findings consistent with EBHS were detected in 24 (14.1%) hares; 35 (20.6%) had liver lesions not typical of the syndrome, 50 (29.4%) had lesions in other tissues and 61 (35.9%) had no lesions. Sixty five (38.2%) of 170 samples were found to be EBHSV-positive (RT-PCR, VP60 gene). In order to investigate associations between viral pathogenesis and host genotype, variation within the exon 2 DQA gene of MHC was assessed. DQA exon 2 analysis revealed the occurrence of seven different alleles in Denmark. Consistent with other populations examined so far in Europe, observed heterozygosity of DQA (H o = 0.1180) was lower than expected (H e = 0.5835). The overall variation for both nucleotide and amino acid differences (2.9% and 14.9%, respectively) were lower in Denmark than those assessed in other European countries (8.3% and 16.9%, respectively). Within the peptide binding region codons the number of nonsynonymous substitutions (dN) was much higher than synonymous substitutions (dS), which would be expected for MHC alleles under balancing selection. Allele frequencies did not significantly differ between EBHSV-positive and -negative hares. However, allele Leeu-DQA*30 was detected in significantly higher (P = 0.000006) frequency among the positive hares found dead with severe histopathological lesions than among those found sick or apparently healthy. In contrast, the latter group was characterized by a higher frequency of the allele Leeu-DQA*14 as well as the proportion of heterozygous individuals (P = 0.000006 and P = 0.027). These data reveal a polarisation between EBHSV pathogenesis and MHC class II genotype within the European brown hare in Denmark.
European Journal of Wildlife Research | 2017
Thomas Kjær Christensen; Jesper Madsen; Tommy Asferg; Jens Peder Hounisen; Lars Haugaard
Reliable hunting bag statistics are a prerequisite for sustainable harvest management. Recently, Internet-based hunting bag reporting systems have been introduced in some European countries, e.g. Denmark, which may enable faster and more detailed reporting. However, reporting of waterfowl bags on a species-specific level may be biased from the individual hunters’ ability to correctly identify species, particularly because juvenile birds can only be identified from subtle differences. We assessed hunters’ ability to identify the five goose species huntable in Denmark. Identifications were made from a line-up of ten full-bodied geese including adults and juveniles. From a total of 2160 identifications made by active hunters, 85.5% were correct while 14.5% were assigned to a wrong species. Active hunters had on average an identification accuracy of 76.0%, highest for Canada goose (99.1%) and lowest for white-fronted goose (74.6%) and bean goose (73.7%). Identification accuracy was significantly lower for juvenile than for adult individuals of white-fronted and bean geese. Correcting the official Danish Bag Record (2013/2014) for identification accuracy, the bags of white-fronted and bean geese increase by 56.5 and 104.4%, respectively, while the bags of greylag and pink-footed geese decrease by 6.7 and 9.0%; the bag for Canada goose remains unchanged. Although identification accuracy is probably higher under field conditions, the study documents that inaccurate species identification is a source of bias in national bag statistics. Hence, improving identification skills by hunters is important to improve bag data accuracy when based on Internet reporting.
Ecology and Evolution | 2018
Karsten Laursen; Javier Balbontín; Ole Thorup; Henrik Haaning Nielsen; Tommy Asferg; Anders Pape Møller
Abstract Environments are rapidly changing due to climate change, land use, intensive agriculture, and the impact of hunting on predator populations. Here, we analyzed long‐term data recorded during 1928–2014 on the size of breeding populations of waders at two large nature reserves in Denmark, Vejlerne and Tipperne, to determine the effects of components of environmental change on breeding populations of waders. Environmental variables and counts of waders were temporally autocorrelated, and we used generalized least square (GLS) by incorporating the first‐order autoregressive correlation structure in the analyses. We attempted to predict the abundance of waders for short‐term trends for two nature reserves (35 years) and for long‐term trends for one nature reserve (86 years), using precipitation, temperature, nutrients, abundance of foxes Vulpes vulpes, area grazed, and number of cattle. There was evidence of impacts of nutrients, climate (long‐term changes in temperature and precipitation), grazing, mowing, and predation on bird populations. We used standard random effects meta‐analyses weighted by (N–3) to quantify these mean effects. There was no significant difference in effect size among species, while mean effect size differed consistently among environmental factors, and the interaction between effect size for species and environmental factors was also significant. Thus, environmental factors affected the different species differently. Mean effect size was the largest at +0.20 for rain, +0.11 for temperature, −0.09 for fox abundance, and −0.03 for number of cattle, while there was no significant mean effect for fertilizer, area grazed, and year. Effect sizes for two short‐term time series from Tipperne and Vejlerne were positively correlated as were effect sizes for short‐term and long‐term time series at Tipperne. This implies that environmental factors had consistent effects across large temporal and spatial scales.
AMBIO: A Journal of the Human Environment | 2018
James Henty Williams; Thorsten J. S. Balsby; Helle Ørsted Nielsen; Tommy Asferg; Jesper Madsen
As many goose populations across the northern Hemisphere continue to rise, the role of hunters to manage these populations is increasingly being considered. We studied recreational goose hunters in Denmark to assess their behavioural and motivational characteristics, willingness to alter their hunting effort, as well as their ability to act as stewards of a rapidly increasing goose population. We identified several behavioural characteristics that typify effective goose hunting practices. We suggest a degree of specialization is necessary to increase goose harvests, as well as mitigating animal welfare issues (e.g. wounding). However, the majority of Danish goose hunters can be considered to be casual participants in this form of hunting. This poses a challenge for wildlife managers wishing to engage recreational hunters to manage highly dynamic wildlife populations, such as geese. If recreational hunters are to be used as a management tool, wildlife managers and hunting organizations will need to consider how best to facilitate skill development, hunting practices and socially legitimate hunting ethics to foster the stewardship role of hunting. We conclude that it is incumbent on wildlife managers to recognize and deal with both internal factors (e.g. skill development) and external influences (e.g. animal welfare concerns). In doing so, potential tensions in the multi-functionality of hunting can be alleviated, maintain hunting as a legitimate and accepted recreational past-time and management tool.
Journal for Nature Conservation | 2005
Mette Hammershøj; Cino Pertoldi; Tommy Asferg; Thomas Bach Møller; Niels Bastian Kristensen
Canid News (Online) | 2018
Sussie Pagh; Mariann Chriél; Aksel Bo Madsen; Trine-Lee Wincentz Jensen; Morten Elmeros; Tommy Asferg; Mette Sif Hansen
AMBIO: A Journal of the Human Environment | 2017
James Henty Williams; Thorsten J. S. Balsby; Helle Ørsted Nielsen; Tommy Asferg; Jesper Madsen