Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tommy Martinsson is active.

Publication


Featured researches published by Tommy Martinsson.


Biochemical Journal | 2008

High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours

Helena Carén; Frida Abel; Per Kogner; Tommy Martinsson

ALK (anaplastic lymphoma kinase) is oncogenic in several tumours and has recently been identified as a predisposition gene for familial NB (neuroblastoma) harbouring mutations in the TKD (tyrosine kinase domain). We have analysed a large set of sporadic human NB primary tumours of all clinical stages for chromosomal re-arrangements using a CGH (comparative genomic hybridization) array (n=108) and mutations of the ALK gene (n=90), and expression of ALK and related genes (n=19). ALK amplification or in-gene re-arrangements were found in 5% of NB tumours and mutations were found in 11%, including two novel not previously published mutations in the TKD, c.3733T>A and c.3735C>A. DNA mutations in the TKD and gene amplifications were only found in advanced large primary tumours or metastatic tumours, and correlated with the expression levels of ALK and downstream genes as well as other unfavourable features, and poor outcome. The results of the present study support that the ALK protein contributes to NB oncogenesis providing a highly interesting putative therapeutic target in a subset of unfavourable NB tumours.


Clinical Cancer Research | 2010

Meta-analysis of Neuroblastomas Reveals a Skewed ALK Mutation Spectrum in Tumors with MYCN Amplification

Sara De Brouwer; Katleen De Preter; Candy Kumps; Piotr Zabrocki; Michaël Porcu; Ellen M. Westerhout; Arjan Lakeman; Jo Vandesompele; Jasmien Hoebeeck; Tom Van Maerken; Anne De Paepe; Genevieve Laureys; Johannes H. Schulte; Alexander Schramm; Caroline Van den Broecke; Joëlle Vermeulen; Nadine Van Roy; Klaus Beiske; Marleen Renard; Rosa Noguera; Olivier Delattre; Isabelle Janoueix-Lerosey; Per Kogner; Tommy Martinsson; Akira Nakagawara; Miki Ohira; Huib N. Caron; Angelika Eggert; Jan Cools; Rogier Versteeg

Purpose: Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. Experimental Design: The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. Results: ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. Conclusions: ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants. Clin Cancer Res; 16(17); 4353–62. ©2010 AACR.


Oncogene | 2001

RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours

Dewi Astuti; Angelo Agathanggelou; Sofia Honorio; Ashraf Dallol; Tommy Martinsson; Per Kogner; Carole Cummins; Hartmut P. H. Neumann; Raimo Voutilainen; Patricia L M Dahia; Charis Eng; Eamonn R. Maher; Farida Latif

Deletions of chromosome 3p are frequent in many types of neoplasia including neural crest tumours such as neuroblastoma (NB) and phaeochromocytoma. Recently we isolated several candidate tumour suppressor genes (TSGs) from a 120 kb critical interval at 3p21.3 defined by overlapping homozygous deletions in lung and breast tumour lines. Although mutation analysis of candidate TSGs in lung and breast cancers revealed only rare mutations, expression of one of the genes (RASSF1A) was absent in the majority of lung tumour cell lines analysed. Subsequently methylation of a CpG island in the promoter region of RASSF1A was demonstrated in a majority of small cell lung carcinomas and to a lesser extent in non-small cell lung carcinomas. To investigate the role of 3p TSGs in neural crest tumours, we (a) analysed phaeochromocytomas for 3p allele loss (n=41) and RASSF1A methylation (n=23) and (b) investigated 67 neuroblastomas for RASSF1A inactivation. 46% of phaeochromocytomas showed 3p allele loss (38.5% at 3p21.3). RASSF1A promoter region hypermethylation was found in 22% (5/23) of sporadic phaeochromocytomas and in 55% (37/67) of neuroblastomas analysed but RASSF1A mutations were not identified. In two neuroblastoma cell lines, methylation of RASSF1A correlated with loss of RASSF1A expression and RASSF1A expression was restored after treatment with the demethylating agent 5-azacytidine. As frequent methylation of the CASP8 gene has also been reported in neuroblastoma, we investigated whether RASSF1A and CASP8 methylation were independent or related events. CASP8 methylation was detected in 56% of neuroblastomas with RASSF1A methylation and 17% without RASSF1A methylation (P=0.0031). These results indicate that (a) RASSF1A inactivation by hypermethylation is a frequent event in neural crest tumorigenesis, particularly neuroblastoma, and that RASSF1A is a candidate 3p21.3 neuroblastoma TSG and (b) a subset of neuroblastomas may be characterized by a CpG island methylator phenotype.


Human Mutation | 2000

Mutations in PMM2 that cause congenital disorders of glycosylation, type Ia (CDG-Ia)

Gert Matthijs; Els Schollen; Cecilia Bjursell; A Erlandson; Hudson H. Freeze; F Imtiaz; Susanne Kjaergaard; Tommy Martinsson; Marianne Schwartz; Nathalie Seta; S Vuillaumier-Barrot; Westphal; Bryan Winchester

The PMM2 gene, which is defective in CDG‐Ia, was cloned three years ago [Matthijs et al., 1997b]. Several publications list PMM2 mutations [Matthijs et al., 1997b, 1998; Kjaergaard et al., 1998, 1999; Bjursell et al., 1998, 2000; Imtiaz et al., 2000] and a few mutations have appeared in case reports or abstracts [Crosby et al., 1999; Kondo et al., 1999; Krasnewich et al., 1999; Mizugishi et al., 1999; Vuillaumier‐Barrot et al., 1999, 2000b]. However, the number of molecularly characterized cases is steadily increasing and many new mutations may never make it to the literature. Therefore, we decided to collate data from six research and diagnostic laboratories that have committed themselves to a systematic search for PMM2 mutations. In total we list 58 different mutations found in 249 patients from 23 countries. We have also collected demographic data and registered the number of deceased patients. The documentation of the genotype–phenotype correlation is certainly valuable, but is out of the scope of this molecular update. The list of mutations will also be available online (URL: http://www.kuleuven.ac.be/med/cdg) and investigators are invited to submit new data to this PMM2 mutation database. Hum Mutat 16:386–394, 2000.


Proceedings of the National Academy of Sciences of the United States of America | 2010

High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset

Helena Carén; Hanna Kryh; Maria Nethander; Rose-Marie Sjöberg; Catarina Träger; Staffan Nilsson; Jonas Abrahamsson; Per Kogner; Tommy Martinsson

Analysis of chromosomal aberrations is used to determine the prognosis of neuroblastomas (NBs) and to aid treatment decisions. MYCN amplification (MNA) alone is an incomplete poor prognostic factor, and chromosome 11q status has recently been included in risk classification. We analyzed 165 NB tumors using high-density SNP microarrays and specifically compared the high-risk groups defined by MNA (n = 37) and 11q-deletion (n = 21). Median patient age at diagnosis was 21 months for MNA tumors and 42 months for 11q-deletion tumors, and median survival time after diagnosis was 16 months for MNA and 40 months for 11q deletion. Overall survival (at 8 years) was ∼35% in both groups. MNA and 11q deletion were almost mutually exclusive; only one case harbored both aberrations. The numbers of segmental aberrations differed significantly; the MNA group had a median of four aberrations, whereas the 11q-deletion group had 12. The high frequency of chromosomal breaks in the 11q-deletion group is suggestive of a chromosomal instability phenotype gene located in 11q; one such gene, H2AFX, is located in 11q23.3 (within the 11q-deletion region). Furthermore, in the groups with segmental aberrations without MNA or 11q deletion, the tumors with 17q gain have worse prognosis than those with segmental aberrations without 17q gain, which have a favorable outcome. This study has implications for therapy in different risk groups and stresses that genome-wide microarray analyses should be included in clinical management to fully evaluate risk, aid diagnosis, and guide treatment.


Journal of Clinical Oncology | 2003

Quality Assessment of Genetic Markers Used for Therapy Stratification

Inge M. Ambros; Jean Bénard; Maria Guida Boavida; Nick Bown; Huib N. Caron; Valérie Combaret; Jérôme Couturier; C. Darnfors; Olivier Delattre; J. Freeman-Edward; Claudio Gambini; Nicole Gross; Claudia M. Hattinger; Andrea Luegmayr; Joseph Lunec; Tommy Martinsson; Katia Mazzocco; Samuel Navarro; Rosa Noguera; Seamus O'Neill; Ulrike Pötschger; S. Rumpler; F. Speleman; Gian Paolo Tonini; A. Valent; N. Van Roy; Gabriele Amann; B. De Bernardi; Per Kogner; Ruth Ladenstein

PURPOSE Therapy stratification based on genetic markers is becoming increasingly important, which makes commitment to the highest possible reliability of the involved markers mandatory. In neuroblastic tumors, amplification of the MYCN gene is an unequivocal marker that indicates aggressive tumor behavior and is consequently used for therapy stratification. To guarantee reliable and standardized quality of genetic features, a quality-assessment study was initiated by the European Neuroblastoma Quality Assessment (ENQUA; connected to International Society of Pediatric Oncology) Group. MATERIALS AND METHODS One hundred thirty-seven coded specimens from 17 tumors were analyzed in 11 European national/regional reference laboratories using molecular techniques, in situ hybridization, and flow and image cytometry. Tumor samples with divergent results were re-evaluated. RESULTS Three hundred fifty-two investigations were performed, which resulted in 23 divergent findings, 17 of which were judged as errors after re-evaluation. MYCN analyses determined by Southern blot and in situ hybridization led to 3.7% and 4% of errors, respectively. Tumor cell content was not indicated in 32% of the samples, and 11% of seemingly correct MYCN results were based on the investigation of normal cells (eg, Schwann cells). Thirty-eight investigations were considered nonassessable. CONCLUSION This study demonstrated the importance of revealing the difficulties and limitations for each technique and problems in interpreting results, which are crucial for therapeutic decisions. Moreover, it led to the formulation of guidelines that are applicable to all kinds of tumors and that contain the standardization of techniques, including the exact determination of the tumor cell content. Finally, the group has developed a common terminology for molecular-genetic results.


Cancer Cell | 2014

The Risk-Associated Long Noncoding RNA NBAT-1 Controls Neuroblastoma Progression by Regulating Cell Proliferation and Neuronal Differentiation

Gaurav Kumar Pandey; Sanhita Mitra; Santhilal Subhash; Falk Hertwig; Meena Kanduri; Kankadeb Mishra; Susanne Fransson; Abiarchana Ganeshram; Tanmoy Mondal; Sashidhar Bandaru; Malin Östensson; Levent M. Akyürek; Jonas Abrahamsson; Susan Pfeifer; Erik Larsson; Leming Shi; Zhiyu Peng; Matthias Fischer; Tommy Martinsson; Fredrik Hedborg; Per Kogner; Chandrasekhar Kanduri

Neuroblastoma is an embryonal tumor of the sympathetic nervous system and the most common extracranial tumor of childhood. By sequencing transcriptomes of low- and high-risk neuroblastomas, we detected differentially expressed annotated and nonannotated long noncoding RNAs (lncRNAs). We identified a lncRNA neuroblastoma associated transcript-1 (NBAT-1) as a biomarker significantly predicting clinical outcome of neuroblastoma. CpG methylation and a high-risk neuroblastoma associated SNP on chromosome 6p22 functionally contribute to NBAT-1 differential expression. Loss of NBAT-1 increases cellular proliferation and invasion. It controls these processes via epigenetic silencing of target genes. NBAT-1 loss affects neuronal differentiation through activation of the neuronal-specific transcription factor NRSF/REST. Thus, loss of NBAT-1 contributes to aggressive neuroblastoma by increasing proliferation and impairing differentiation of neuronal precursors.


British Journal of Dermatology | 2006

Age at onset and different types of psoriasis

Gunnar Swanbeck; Annica Inerot; Tommy Martinsson; Jan Wahlström; Charlotta Enerbäck; Fredrik Enlund; Maria Yhr

Summary The age at onset of psoriasis has been analysed for 11,366 psoriasis patients. The age at onset for siblings of probands has been analysed for 805 probands having one affected sibling and for 1 79 probands having two affected siblings. The age at onset curve for all probands shows a dominating maximum at about puberty but also indications for two more maxima at about 30 and 50 years of age, respectively. A more relevant picture of the risk of getting psoriasis at different ages is obtained if the onset for old people having psoriasis is investigated. The three maxima come out more clearly in this case, and the puberty maximum is not so dominating. For the families with one proband and two affected siblings there is a statistically significant correlation (Plt;0·001) between the age at onset of the proband and of the siblings, and also between the siblings. The correlation coefficient is between 0·30 and 0·45. For the probands with one affected sibling, the ages at onset of the siblings mainly fall in the same range as those of the probands. These data indicate three groups of patients with respeel to age at onset. However, the overlap between the different groups is considerable. The data presented are compatible with three, possibly genetically different, variants of psoriasis vulgaris. By studying the occurrence of psoriasis among parents of the probands, the gene frequency can be estimated assuming a recessive mode of inheritance. It then turns out that the gene frequency of the group with the earliest age at onset has a gene frequency of about 0·25, the next earliest, 0·18, and the latest, 0·14.


Oncogene | 2003

Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers

Angelo Agathanggelou; Ashraf Dallol; Sabine Zöchbauer-Müller; Catherine Morrissey; Sofia Honorio; Luke B. Hesson; Tommy Martinsson; Kwun M. Fong; Michael J Kuo; Po Wing Yuen; Eamonn R. Maher; John D. Minna; Farida Latif

Many distinct regions of 3p show frequent allelic losses in a wide range of tumour types. Previously, the BLU candidate tumour suppressor gene (TSG) encoded by a gene-rich critical deleted region in 3p21.3 was found to be inactivated rarely in lung cancer, although expression was downregulated in a subset of lung tumour cell lines. To elucidate the role of BLU in tumorigenesis, we analysed BLU promoter methylation status in tumour cell lines and detected promoter region hypermethylation in 39% lung, 42% breast, 50% kidney, 86% neuroblastoma and 80% nasopharyngeal (NPC) tumour cell lines. Methylation of the BLU promoter region correlated with the downregulation of BLU transcript expression in tumour cell lines. Expression was recovered in tumour cell lines treated with 5-aza 2-deoxycytidine. Exogenous expression of BLU in neuroblastoma (SK-N-SH) and NSCLC (NCI-H1299) resulted in reduced colony formation efficiency, in vitro. Furthermore, methylation of the BLU promoter region was detected in primary sporadic SCLC (14%), NSCLC (19%) and neuroblastoma (41%). As frequent methylation of the RASSF1A 3p21.3 TSG has also been reported in these tumour types, we investigated whether BLU and RASSF1A methylation were independent or related events. No correlation was found between hypermethylation of RASSF1A and BLU promoter region CpG islands in SCLC or neuroblastoma. However, there was association between RASSF1A and BLU methylation in NSCLC (P=0.0031). Our data suggest that in SCLC and neuroblastoma, RASSF1A and BLU methylations are unrelated events and not a manifestation of a regional alteration in epigenetic status, while in NSCLC there may be a regional methylation effect. Together, these data suggest a significant role for epigenetic inactivation of BLU in the pathogenesis of common human cancers and that methylation inactivation of BLU occurs independent of RASSF1A in SCLC and neuroblastoma tumours.


European Journal of Human Genetics | 2001

Genome-wide Linkage Analysis of Scandinavian Affected Sib-pairs Supports Presence of Susceptibility Loci for Celiac Disease on Chromosomes 5 and 11

Åsa Torinsson Naluai; Staffan Nilsson; Audur H. Gudjonsdottir; Andrew S Louka; Henry Ascher; Johan Ek; Birgitta Hallberg; Lena Samuelsson; Bengt Kristiansson; Tommy Martinsson; Olle Nerman; Ludvig M. Sollid; Jan Wahlström

Celiac disease (CD) is a common chronic inflammatory disorder of the small intestine with a multifactorial aetiology. HLA is a well-known risk factor, but other genetic factors also influence disease susceptibility. To identify the genes involved in this disorder, we performed a genome-wide scan on 106 well-defined Swedish and Norwegian families with at least two affected siblings. We investigated familial segregation of 398 microsatellite markers, and utilised non-parametric linkage analysis. The strongest linkage with disease was found to the HLA locus (6p) (P<0.000006). There were eight regions besides HLA with a point wise P value below 0.05. Among these eight regions were 11q and 5q, both of which have been suggested in several linkage studies of independent celiac disease families. We also performed a stratification analysis of families according to their HLA genotypes. This resulted in significant differences on chromosome 2q. These results indicate that 11q, 5q and possibly also 2q are true susceptibility regions in CD.

Collaboration


Dive into the Tommy Martinsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Wahlström

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rose-Marie Sjöberg

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Göran Levan

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Helena Carén

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Frida Abel

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge