Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoaki Sakamoto is active.

Publication


Featured researches published by Tomoaki Sakamoto.


Plant Physiology | 2004

An Overview of Gibberellin Metabolism Enzyme Genes and Their Related Mutants in Rice

Tomoaki Sakamoto; Koutarou Miura; Hironori Itoh; Tomoko Tatsumi; Miyako Ueguchi-Tanaka; Kanako Ishiyama; Masatomo Kobayashi; Ganesh Kumar Agrawal; Shin Takeda; Kiyomi Abe; Akio Miyao; Hirohiko Hirochika; Hidemi Kitano; Motoyuki Ashikari; Makoto Matsuoka

To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox). In contrast to the Arabidopsis genome, multiple CPS-like, KS-like, and KO-like genes were identified in the rice genome, most of which are contiguously arranged. We also identified 18 GA-deficient rice mutants at six different loci from rice mutant collections. Based on the mutant and expression analyses, we demonstrated that the enzymes catalyzing the early steps in the GA biosynthetic pathway (i.e. CPS, KS, KO, and KAO) are mainly encoded by single genes, while those for later steps (i.e. GA20ox, GA3ox, and GA2ox) are encoded by gene families. The remaining CPS-like, KS-like, and KO-like genes were likely to be involved in the biosynthesis of diterpene phytoalexins rather than GAs because the expression of two CPS-like and three KS-like genes (OsCPS2, OsCPS4, OsKS4, OsKS7, and OsKS8) were increased by UV irradiation, and four of these genes (OsCPS2, OsCPS4, OsKS4, and OsKS7) were also induced by an elicitor treatment.


Plant Physiology | 2006

Morphological Alteration Caused by Brassinosteroid Insensitivity Increases the Biomass and Grain Production of Rice

Yoichi Morinaka; Tomoaki Sakamoto; Yoshiaki Inukai; Masakazu Agetsuma; Hidemi Kitano; Motoyuki Ashikari; Makoto Matsuoka

The rice (Oryza sativa) dwarf mutant d61 phenotype is caused by loss of function of a rice BRASSINOSTEROID INSENSITIVE1 ortholog, OsBRI1. We have identified nine d61 alleles, the weakest of which, d61-7, confers agronomically important traits such as semidwarf stature and erect leaves. Because erect-leaf habit is considered to increase light capture for photosynthesis, we compared the biomass and grain production of wild-type and d61-7 rice. The biomass of wild type was 38% higher than that of d61-7 at harvest under conventional planting density because of the dwarfism of d61-7. However, the biomass of d61-7 was 35% higher than that of wild type at high planting density. The grain yield of wild type reached a maximum at middensity, but the yield of d61-7 continued to increase with planting density. These results indicate that d61-7 produces biomass more effectively than wild type, and consequently more effectively assimilates the biomass in reproductive organ development at high planting density. However, the small grain size of d61-7 counters any increase in grain yield, leading to the same grain yield as that of wild type even at high density. We therefore produced transgenic rice with partial suppression of endogenous OsBRI1 expression to obtain the erect-leaf phenotype without grain changes. The estimated grain yield of these transformants was about 30% higher than that of wild type at high density. These results demonstrate the feasibility of generating erect-leaf plants by modifying the expression of the brassinosteroid receptor gene in transgenic rice plants.


Plant Physiology | 2006

Ectopic Expression of KNOTTED1-Like Homeobox Protein Induces Expression of Cytokinin Biosynthesis Genes in Rice

Tomoaki Sakamoto; Hitoshi Sakakibara; Mikiko Kojima; Yuko Yamamoto; Hiroshi Nagasaki; Yoshiaki Inukai; Yutaka Sato; Makoto Matsuoka

Some phytohormones such as gibberellins (GAs) and cytokinins (CKs) are potential targets of the KNOTTED1-like homeobox (KNOX) protein. To enhance our understanding of KNOX protein function in plant development, we identified rice (Oryza sativa) genes for adenosine phosphate isopentenyltransferase (IPT), which catalyzes the rate-limiting step of CK biosynthesis. Molecular and biochemical studies revealed that there are eight IPT genes, OsIPT1 to OsIPT8, in the rice genome, including a pseudogene, OsIPT6. Overexpression of OsIPTs in transgenic rice inhibited root development and promoted axillary bud growth, indicating that OsIPTs are functional in vivo. Phenotypes of OsIPT overexpressers resembled those of KNOX-overproducing transgenic rice, although OsIPT overexpressers did not form roots or ectopic meristems, both of which are observed in KNOX overproducers. Expression of two OsIPT genes, OsIPT2 and OsIPT3, was up-regulated in response to the induction of KNOX protein function with similar kinetics to those of down-regulation of GA 20-oxidase genes, target genes of KNOX proteins in dicots. However, expression of these two OsIPT genes was not regulated in a feedback manner. These results suggest that OsIPT2 and OsIPT3 have unique roles in the developmental process, which is controlled by KNOX proteins, rather than in the maintenance of bioactive CK levels in rice. On the basis of these findings, we concluded that KNOX protein simultaneously decreases GA biosynthesis and increases de novo CK biosynthesis through the induction of OsIPT2 and OsIPT3 expression, and the resulting high-CK and low-GA condition is required for formation and maintenance of the meristem.


The Plant Cell | 2001

Functional Analysis of the Conserved Domains of a Rice KNOX Homeodomain Protein, OSH15

Hiroshi Nagasaki; Tomoaki Sakamoto; Yutaka Sato; Makoto Matsuoka

The rice KNOX protein OSH15 consists of four conserved domains: the MEINOX domain, which can be divided into two subdomains (KNOX1 and KNOX2); the GSE domain; the ELK domain; and the homeodomain (HD). To investigate the function of each domain, we generated 10 truncated proteins with deletions in the conserved domains and four proteins with mutations in the conserved amino acids in the HD. Transgenic analysis suggested that KNOX2 and HD are essential for inducing the abnormal phenotype and that the KNOX1 and ELK domains affect phenotype severity. We also found that both KNOX2 and HD are necessary for homodimerization and that only HD is needed for binding of OSH15 to its target sequence. Transactivation studies suggested that both the KNOX1 and ELK domains play a role in suppressing target gene expression. On the basis of these findings, we propose that overproduced OSH15 probably acts as a dimer and may ectopically suppress the expression of target genes that induce abnormal morphology in transgenic plants.


Plant Journal | 2013

Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice.

Tomoaki Sakamoto; Yoichi Morinaka; Yoshiaki Inukai; Hidemi Kitano; Shozo Fujioka

The phytohormones auxins and brassinosteroids are both essential regulators of physiological and developmental processes, and it has been suggested that they act inter-dependently and synergistically. In rice (Oryza sativa), auxin co-application improves the brassinosteroid response in the rice lamina inclination bioassay. Here, we showed that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor. Auxin treatment increased expression of the rice brassinosteroid receptor gene OsBRI1. The promoter of OsBRI1 contains an auxin-response element (AuxRE) that is targeted by auxin-response factor (ARF) transcription factors. An AuxRE mutation abolished the induction of OsBRI1 expression by auxins, and OsBRI1 expression was down-regulated in an arf mutant. The AuxRE motif in the OsBRI1 promoter, and thus the transient up-regulation of OsBRI1 expression caused by treatment with indole-3-acetic acid, is essential for the indole-3-acetic acid-induced increase in sensitivity to brassinosteroids. These findings demonstrate that some ARFs control the degree of brassinosteroid perception required for normal growth and development in rice. Although multi-level interactions between auxins and brassinosteroids have previously been reported, our findings suggest a mechanism by which auxins control cellular sensitivity to brassinosteroids, and further support the notion that interactions between auxins and brassinosteroids are extensive and complex.


Journal of Plant Growth Regulation | 2012

ROOT GROWTH INHIBITING, a Rice Endo-1,4-β-d-Glucanase, Regulates Cell Wall Loosening and is Essential for Root Elongation

Yoshiaki Inukai; Tomoaki Sakamoto; Yoichi Morinaka; Masami Miwa; Miho Kojima; Eiichi Tanimoto; Hiroyuki Yamamoto; Yoshihiro Katayama; Makoto Matsuoka; Hidemi Kitano

The molecular mechanism involved in cell wall dynamics has not been well clarified, although it is quite important for organ growth. We characterized a rice mutant, root growth inhibiting (rt), which is defective in root elongation. The rt mutant showed a severe defect in cell elongation at the root-elongating zone with additional collapse of epidermal and cortex cells at the root tip caused by the defect in the smooth exfoliation of root cap cells. Consistent with these phenotypes, expression of the RT gene, which encodes a member of the membrane-anchored endo-1,4-β-d-glucanase, was specifically localized in the root-elongating zone and at the junction between epidermal and root cap cells. The enzymatic analysis of root extracts from the wild-type and rt mutant indicated that RT hydrolyzes noncrystalline amorphous cellulose. The cellulose content was slightly increased but the crystallinity of cellulose was decreased in the rt root. In addition, the hemicellulose composition was different between wild-type and rt roots. The total extensibility was significantly lower in the rt root explants. Based on these results, we concluded that RT is involved in the disassembly of the cell wall for cell elongation in roots as well as for root cap exfoliation from the epidermal cell layer by hydrolyzing the noncrystalline amorphous cellulose fibers of cellulose microfibrils resulting in loosening of the hemicellulose and cellulose interaction.


Phytochemistry | 2014

Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone.

Masashi Asahina; Yuji Tamaki; Tomoaki Sakamoto; Kyomi Shibata; Takahito Nomura; Takao Yokota

In this study the relationship between blue light- and brassinosteroid-enhanced leaf lamina bending and unrolling in rice was investigated. Twenty-four hours (h) irradiation with white or blue light increased endogenous brassinosteroid levels, especially those of typhasterol and castasterone, in aerial tissues of rice seedlings. There was an accompanying up-regulation of transcript levels of CYP85A1/OsDWARF, encoding an enzyme catalyzing C-6 oxidation, after 6h under either white or blue light. These effects were not observed in seedlings placed under far-red or red light regimes. It was concluded that blue light up-regulates the levels of several cytochrome P450 enzymes including CYP85A1, thereby promoting the synthesis of castasterone, a biologically active brassinosteroid in rice. Based on these findings, it is considered that blue light-mediated rice leaf bending and unrolling are consequences of the enhanced biosynthesis of endogenous castasterone. In contrast to aerial tissues, brassinosteroid synthesis in roots appeared to be negatively regulated by white, blue and red light but positively controlled by far-red light.


Plant Signaling & Behavior | 2013

An E3 ubiquitin ligase, ERECT LEAF1, functions in brassinosteroid signaling of rice

Tomoaki Sakamoto; Hidemi Kitano; Shozo Fujioka

A spontaneous rice mutant, erect leaf1 (elf1–1), produced a dwarf phenotype with erect leaves and short grains. Physiological analyses suggested that elf1–1 is brassinosteroid-insensitive, so we hypothesized that ELF1 encodes a positive regulator of brassinosteroid signaling. ELF1, identified by means of positional cloning, encodes a protein with both a U-box domain and ARMADILLO (ARM) repeats. U-box proteins have been shown to function as E3 ubiquitin ligases; in fact, ELF1 possessed E3 ubiquitin ligase activity in vitro. However, ELF1 itself does not appear to be polyubiquitinated. Mutant phenotypes of 2 more elf1 alleles indicate that the entire ARM repeats is indispensable for ELF1 activity. These results suggest that ELF1 ubiquitinates target proteins through an interaction mediated by ARM repeats. Similarities in the phenotypes of elf1 and d61 mutants (mutants of brassinosteroid receptor gene OsBRI1), and in the regulation of ELF1 and OsBRI1 expression, imply that ELF1 functions as a positive regulator of brassinosteroid signaling in rice.


Plant Signaling & Behavior | 2013

Auxins increase expression of the brassinosteroid receptor and brassinosteroid-responsive genes in Arabidopsis

Tomoaki Sakamoto; Shozo Fujioka

Auxins and brassinosteroids are essential phytohormones that synergistically regulate physiological and developmental processes in plants. Previously, we demonstrated that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor in rice. Here we showed that auxin treatment increased expression of the Arabidopsis brassinosteroid receptor gene BRI1. The promoter of BRI1 has an auxin-response element that is targeted by auxin-response factor transcription factors. Auxin pretreatment increased the sensitivity to brassinosteroids of brassinosteroid-responsive genes. Although multilevel interactions between auxins and brassinosteroids have previously been reported, our findings suggest a possibility that auxins control the degree of brassinosteroid perception by regulating the expression of gene for brassinosteroid receptor, and this phenomenon is conserved between monocots (rice) and dicots (Arabidopsis).


Journal of Horticultural Science & Biotechnology | 2014

Relationship between invertase gene expression and sucrose concentration in the tuberous roots of sweet potato (Ipomoea batatas L. Lam.) during cold storage

Tomoaki Sakamoto; Daisuke Masuda; Kouhei Nishimura; Yoichi Ikeshita

Summary Low sweetness in freshly-harvested tuberous roots is an undesirable characteristic of the sweet potato (Ipomoea batatas L. Lam.) cultivar, ‘Kokei 14’. In the present study, we sought to characterise the biochemical and molecular aspects of sucrose accumulation in the tuberous roots of ‘Kokei 14’ during cold storage in comparison with another sweet potato cultivar, ‘Beniazuma’. The tuberous roots of both cultivars were harvested and stored at 4ºC for 30 d. The sucrose, fructose, and glucose concentrations, the activities of two sugar-metabolising enzymes, and the expression of six sucrose-cleaving acid invertase (AI) genes were monitored. Exposure to chilling temperatures (4ºC) for up to 30 d increased the sucrose concentration in the tuberous roots of ‘Kokei 14’, but not in those of ‘Beniazuma’. In line with this phenomenon, we found that the activity of AI was suppressed to approx. 0.4-times the pre-treatment value in ‘Kokei 14’, but increased to 2.7-times the pre-treatment value in ‘Beniazuma’ during cold storage for 30 d.The patterns and levels of expression of six genes encoding AIs indicated that the protein encoded by IbAINV1 was the main AI that degraded sucrose in the tuberous roots of both cultivars. IbAINV1 gene expression increased transiently and reached a maximum (2.3-times the pre-treatment value) at 20 d in ‘Beniazuma’, whereas it decreased to approx. 0.14-times the pre-treatment value by 10 d in ‘Kokei 14’ and remained low for the duration of the experiment. Sucrose concentrations did not change in the tuberous roots of ‘Kokei 14’ stored at 13ºC for 20 d. Therefore, we conclude that the accumulation of sucrose in the tuberous roots of ‘Kokei 14’ was caused mainly by suppression of IbAINV1 gene expression in response to chilling.

Collaboration


Dive into the Tomoaki Sakamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masashi Fukumoto

East Malling Research Station

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isomaro Yamaguchi

Maebashi Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge