Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidemi Kitano is active.

Publication


Featured researches published by Hidemi Kitano.


Nature | 2005

GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin.

Miyako Ueguchi-Tanaka; Motoyuki Ashikari; Masatoshi Nakajima; Hironori Itoh; Etsuko Katoh; Masatomo Kobayashi; Teh-yuan Chow; Yue-ie C. Hsing; Hidemi Kitano; Isomaro Yamaguchi; Makoto Matsuoka

Gibberellins (GAs) are phytohormones that are essential for many developmental processes in plants. It has been postulated that plants have both membrane-bound and soluble GA receptors; however, no GA receptors have yet been identified. Here we report the isolation and characterization of a new GA-insensitive dwarf mutant of rice, gid1. The GID1 gene encodes an unknown protein with similarity to the hormone-sensitive lipases, and we observed preferential localization of a GID1–green fluorescent protein (GFP) signal in nuclei. Recombinant glutathione S-transferase (GST)–GID1 had a high affinity only for biologically active GAs, whereas mutated GST–GID1 corresponding to three gid1 alleles had no GA-binding affinity. The dissociation constant for GA4 was estimated to be around 10-7 M, enough to account for the GA dependency of shoot elongation. Moreover, GID1 bound to SLR1, a rice DELLA protein, in a GA-dependent manner in yeast cells. GID1 overexpression resulted in a GA-hypersensitive phenotype. Together, our results indicate that GID1 is a soluble receptor mediating GA signalling in rice.


The Plant Cell | 2001

slender Rice, a Constitutive Gibberellin Response Mutant, Is Caused by a Null Mutation of the SLR1 Gene, an Ortholog of the Height-Regulating Gene GAI/RGA/RHT/D8

Akira Ikeda; Miyako Ueguchi-Tanaka; Yutaka Sonoda; Hidemi Kitano; Masaji Koshioka; Yuzo Futsuhara; Makoto Matsuoka; Junji Yamaguchi

The rice slender mutant (slr1-1) is caused by a single recessive mutation and results in a constitutive gibberellin (GA) response phenotype. The mutant elongates as if saturated with GAs. In this mutant, (1) elongation was unaffected by an inhibitor of GA biosynthesis, (2) GA-inducible α-amylase was produced by the aleurone layers without gibberellic acid application, and (3) endogenous GA content was lower than in the wild-type plant. These results indicate that the product of the SLR1 gene is an intermediate of the GA signal transduction pathway. SLR1 maps to OsGAI in rice and has significant homology with height-regulating genes, such as RHT-1Da in wheat, D8 in maize, and GAI and RGA in Arabidopsis. The GAI gene family is likely to encode transcriptional factors belonging to the GRAS gene superfamily. DNA sequence analysis revealed that the slr1-1 mutation is a single basepair deletion of the nuclear localization signal domain, resulting in a frameshift mutation that abolishes protein production. Furthermore, introduction of a 6-kb genomic DNA fragment containing the wild-type SLR1 gene into the slr1-1 mutant restored GA sensitivity to normal. These results indicate that the slr1-1 mutant is caused by a loss-of-function mutation of the SLR1 gene, which is an ortholog of GAI, RGA, RHT, and D8. We also succeeded in producing GA-insensitive dwarf rice by transforming wild-type rice with a modified SLR1 gene construct that has a 17–amino acid deletion affecting the DELLA region. Thus, we demonstrate opposite GA response phenotypes depending on the type of mutations in SLR1.


Nature | 2009

The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water.

Yoko Hattori; Keisuke Nagai; Shizuka Furukawa; Xian-Jun Song; Ritsuko Kawano; Hitoshi Sakakibara; Jianzhong Wu; Takashi Matsumoto; Atsushi Yoshimura; Hidemi Kitano; Makoto Matsuoka; Hitoshi Mori; Motoyuki Ashikari

Living organisms must acquire new biological functions to adapt to changing and hostile environments. Deepwater rice has evolved and adapted to flooding by acquiring the ability to significantly elongate its internodes, which have hollow structures and function as snorkels to allow gas exchange with the atmosphere, and thus prevent drowning. Many physiological studies have shown that the phytohormones ethylene, gibberellin and abscisic acid are involved in this response, but the gene(s) responsible for this trait has not been identified. Here we show the molecular mechanism of deepwater response through the identification of the genes SNORKEL1 and SNORKEL2, which trigger deepwater response by encoding ethylene response factors involved in ethylene signalling. Under deepwater conditions, ethylene accumulates in the plant and induces expression of these two genes. The products of SNORKEL1 and SNORKEL2 then trigger remarkable internode elongation via gibberellin. We also demonstrate that the introduction of three quantitative trait loci from deepwater rice into non-deepwater rice enabled the latter to become deepwater rice. This discovery will contribute to rice breeding in lowland areas that are frequently flooded during the rainy season.


The Plant Cell | 2000

Loss of Function of a Rice brassinosteroid insensitive1 Homolog Prevents Internode Elongation and Bending of the Lamina Joint

Chizuko Yamamuro; Yoshihisa Ihara; Xiong Wu; Takahiro Noguchi; Shozo Fujioka; Suguru Takatsuto; Motoyuki Ashikari; Hidemi Kitano; Makoto Matsuoka

Brassinosteroids (BRs) are plant growth–promoting natural products required for plant growth and development. Physiological studies have demonstrated that exogenous BR, alone or in combination with auxin, enhance bending of the lamina joint of rice. However, little is known about the function of endogenous BR in rice or other grass species. We report here the phenotypical and molecular characterization of a rice dwarf mutant, d61, that is less sensitive to BR compared to the wild type. We cloned a rice gene, OsBRI1, with extensive sequence similarity to that of the Arabidopsis BRI gene, which encodes a putative BR receptor kinase. Linkage analysis showed that the OsBRI1 gene is closely linked to the d61 locus. Single nucleotide substitutions found at different sites of the d61 alleles would give rise to amino acid changes in the corresponding polypeptides. Furthermore, introduction of the entire OsBRI1 coding region, including the 5′ and 3′ flanking sequences, into d61 plants complemented the mutation to display the wild-type phenotype. Transgenic plants carrying the antisense strand of the OsBRI1 transcript showed similar or even more severe phenotypes than those of the d61 mutants. Our results show that OsBRI1 functions in various growth and developmental processes in rice, including (1) internode elongation, by inducing the formation of the intercalary meristem and the longitudinal elongation of internode cells; (2) bending of the lamina joint; and (3) skotomorphogenesis.


Plant Physiology | 2004

An Overview of Gibberellin Metabolism Enzyme Genes and Their Related Mutants in Rice

Tomoaki Sakamoto; Koutarou Miura; Hironori Itoh; Tomoko Tatsumi; Miyako Ueguchi-Tanaka; Kanako Ishiyama; Masatomo Kobayashi; Ganesh Kumar Agrawal; Shin Takeda; Kiyomi Abe; Akio Miyao; Hirohiko Hirochika; Hidemi Kitano; Motoyuki Ashikari; Makoto Matsuoka

To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox). In contrast to the Arabidopsis genome, multiple CPS-like, KS-like, and KO-like genes were identified in the rice genome, most of which are contiguously arranged. We also identified 18 GA-deficient rice mutants at six different loci from rice mutant collections. Based on the mutant and expression analyses, we demonstrated that the enzymes catalyzing the early steps in the GA biosynthetic pathway (i.e. CPS, KS, KO, and KAO) are mainly encoded by single genes, while those for later steps (i.e. GA20ox, GA3ox, and GA2ox) are encoded by gene families. The remaining CPS-like, KS-like, and KO-like genes were likely to be involved in the biosynthesis of diterpene phytoalexins rather than GAs because the expression of two CPS-like and three KS-like genes (OsCPS2, OsCPS4, OsKS4, OsKS7, and OsKS8) were increased by UV irradiation, and four of these genes (OsCPS2, OsCPS4, OsKS4, and OsKS7) were also induced by an elicitor treatment.


Nature Biotechnology | 2006

Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice

Tomoaki Sakamoto; Yoichi Morinaka; Toshiyuki Ohnishi; Hidehiko Sunohara; Shozo Fujioka; Miyako Ueguchi-Tanaka; Masaharu Mizutani; Kanzo Sakata; Suguru Takatsuto; Shigeo Yoshida; Hiroshi Tanaka; Hidemi Kitano; Makoto Matsuoka

New cultivars with very erect leaves, which increase light capture for photosynthesis and nitrogen storage for grain filling, may have increased grain yields. Here we show that the erect leaf phenotype of a rice brassinosteroid–deficient mutant, osdwarf4-1, is associated with enhanced grain yields under conditions of dense planting, even without extra fertilizer. Molecular and biochemical studies reveal that two different cytochrome P450s, CYP90B2/OsDWARF4 and CYP724B1/D11, function redundantly in C-22 hydroxylation, the rate-limiting step of brassinosteroid biosynthesis. Therefore, despite the central role of brassinosteroids in plant growth and development, mutation of OsDWARF4 alone causes only limited defects in brassinosteroid biosynthesis and plant morphology. These results suggest that regulated genetic modulation of brassinosteroid biosynthesis can improve crops without the negative environmental effects of fertilizers.


The Plant Cell | 2003

A Rice Brassinosteroid-Deficient Mutant, ebisu dwarf (d2), Is Caused by a Loss of Function of a New Member of Cytochrome P450

Zhi Hong; Miyako Ueguchi-Tanaka; Kazuto Umemura; Sakurako Uozu; Shozo Fujioka; Suguru Takatsuto; Shigeo Yoshida; Motoyuki Ashikari; Hidemi Kitano; Makoto Matsuoka

We characterized a rice dwarf mutant, ebisu dwarf (d2). It showed the pleiotropic abnormal phenotype similar to that of the rice brassinosteroid (BR)-insensitive mutant, d61. The dwarf phenotype of d2 was rescued by exogenous brassinolide treatment. The accumulation profile of BR intermediates in the d2 mutants confirmed that these plants are deficient in late BR biosynthesis. We cloned the D2 gene by map-based cloning. The D2 gene encoded a novel cytochrome P450 classified in CYP90D that is highly similar to the reported BR synthesis enzymes. Introduction of the wild D2 gene into d2-1 rescued the abnormal phenotype of the mutants. In feeding experiments, 3-dehydro-6-deoxoteasterone, 3-dehydroteasterone, and brassinolide effectively caused the lamina joints of the d2 plants to bend, whereas more upstream compounds did not cause bending. Based on these results, we conclude that D2/CYP90D2 catalyzes the steps from 6-deoxoteasterone to 3-dehydro-6-deoxoteasterone and from teasterone to 3-dehydroteasterone in the late BR biosynthesis pathway.


The Plant Cell | 2005

Crown rootless1, Which Is Essential for Crown Root Formation in Rice, Is a Target of an AUXIN RESPONSE FACTOR in Auxin Signaling

Yoshiaki Inukai; Tomoaki Sakamoto; Miyako Ueguchi-Tanaka; Yohko Shibata; Kenji Gomi; Iichiro Umemura; Yasuko Hasegawa; Motoyuki Ashikari; Hidemi Kitano; Makoto Matsuoka

Although the importance of auxin in root development is well known, the molecular mechanisms involved are still unknown. We characterized a rice (Oryza sativa) mutant defective in crown root formation, crown rootless1 (crl1). The crl1 mutant showed additional auxin-related abnormal phenotypic traits in the roots, such as decreased lateral root number, auxin insensitivity in lateral root formation, and impaired root gravitropism, whereas no abnormal phenotypic traits were observed in aboveground organs. Expression of Crl1, which encodes a member of the plant-specific ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES protein family, was localized in tissues where crown and lateral roots are initiated and overlapped with β-glucuronidase staining controlled by the DR5 promoter. Exogenous auxin treatment induced Crl1 expression without de novo protein biosynthesis, and this induction required the degradation of AUXIN/INDOLE-3-ACETIC ACID proteins. Crl1 contains two putative auxin response elements (AuxREs) in its promoter region. The proximal AuxRE specifically interacted with a rice AUXIN RESPONSE FACTOR (ARF) and acted as a cis-motif for Crl1 expression. We conclude that Crl1 encodes a positive regulator for crown and lateral root formation and that its expression is directly regulated by an ARF in the auxin signaling pathway.


The Plant Cell | 2005

A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, dwarf11, with Reduced Seed Length

Sumiyo Tanabe; Motoyuki Ashikari; Shozo Fujioka; Suguru Takatsuto; D. Shigeo Yoshida; Masahiro Yano; Atsushi Yoshimura; Hidemi Kitano; Makoto Matsuoka; Yukiko Fujisawa; Hisaharu Kato; Yukimoto Iwasaki

We have characterized a rice (Oryza sativa) dwarf mutant, dwarf11 (d11), that bears seeds of reduced length. To understand the mechanism by which seed length is regulated, the D11 gene was isolated by a map-based cloning method. The gene was found to encode a novel cytochrome P450 (CYP724B1), which showed homology to enzymes involved in brassinosteroid (BR) biosynthesis. The dwarf phenotype of d11 mutants was restored by the application of the brassinolide (BL). Compared with wild-type plants, the aberrant D11 mRNA accumulated at higher levels in d11 mutants and was dramatically reduced by treatment with BL, implying that the gene is feedback-regulated by BL. Precise determination of the defective step(s) in BR synthesis in d11 mutants proved intractable because of tissue specificity and the complex control of BR accumulation in plants. However, 6-deoxotyphasterol (6-DeoxoTY) and typhasterol (TY), but not any upstream intermediates before these compounds, effectively restored BR response in d11 mutants in a lamina joint bending assay. Multiple lines of evidence together suggest that the D11/CYP724B1 gene plays a role in BR synthesis and may be involved in the supply of 6-DeoxoTY and TY in the BR biosynthesis network in rice.


The Plant Cell | 2007

Molecular Interactions of a Soluble Gibberellin Receptor, GID1, with a Rice DELLA Protein, SLR1, and Gibberellin

Miyako Ueguchi-Tanaka; Masatoshi Nakajima; Etsuko Katoh; Hiroko Ohmiya; Kenji Asano; Shoko Saji; Xiang Hongyu; Motoyuki Ashikari; Hidemi Kitano; Isomaro Yamaguchi; Makoto Matsuoka

GIBBERELLIN INSENSITIVE DWARF1 (GID1) encodes a soluble gibberellin (GA) receptor that shares sequence similarity with a hormone-sensitive lipase (HSL). Previously, a yeast two-hybrid (Y2H) assay revealed that the GID1-GA complex directly interacts with SLENDER RICE1 (SLR1), a DELLA repressor protein in GA signaling. Here, we demonstrated, by pull-down and bimolecular fluorescence complementation (BiFC) experiments, that the GA-dependent GID1–SLR1 interaction also occurs in planta. GA4 was found to have the highest affinity to GID1 in Y2H assays and is the most effective form of GA in planta. Domain analyses of SLR1 using Y2H, gel filtration, and BiFC methods revealed that the DELLA and TVHYNP domains of SLR1 are required for the GID1–SLR1 interaction. To identify the important regions of GID1 for GA and SLR1 interactions, we used many different mutant versions of GID1, such as the spontaneous mutant GID1s, N- and C-terminal truncated GID1s, and mutagenized GID1 proteins with conserved amino acids replaced with Ala. The amino acid residues important for SLR1 interaction completely overlapped the residues required for GA binding that were scattered throughout the GID1 molecule. When we plotted these residues on the GID1 structure predicted by analogy with HSL tertiary structure, many residues were located at regions corresponding to the substrate binding pocket and lid. Furthermore, the GA–GID1 interaction was stabilized by SLR1. Based on these observations, we proposed a molecular model for interaction between GA, GID1, and SLR1.

Collaboration


Dive into the Hidemi Kitano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kotaro Miura

Fukui Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Yukimoto Iwasaki

Fukui Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge