Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomohiko Ohno is active.

Publication


Featured researches published by Tomohiko Ohno.


Cancer Prevention Research | 2011

Preventive Effects of (−)-Epigallocatechin Gallate on Diethylnitrosamine-Induced Liver Tumorigenesis in Obese and Diabetic C57BL/KsJ-db/db Mice

Masahito Shimizu; Hiroyasu Sakai; Yohei Shirakami; Yoichi Yasuda; Masaya Kubota; Daishi Terakura; Atsushi Baba; Tomohiko Ohno; Yukihiko Hara; Takuji Tanaka; Hisataka Moriwaki

Obesity and related metabolic abnormalities, including insulin resistance and a state of chronic inflammation, increase the risk of hepatocellular carcinoma. Abnormal activation of the insulin-like growth factor (IGF)/ IGF-1 receptor (IGF-1R) axis is also involved in obesity-related liver tumorigenesis. In the present study, we examined the effects of (−)-epigallocatechin gallate (EGCG), a major biologically active component of green tea, on the development of diethylnitrosamine (DEN)-induced liver tumorigenesis in C57BL/KsJ-db/db (db/db) obese mice. Male db/db mice were given tap water containing 40 ppm DEN for 2 weeks and then they received drinking water containing 0.1% EGCG for 34 weeks. At sacrifice, drinking water with EGCG significantly inhibited the development of liver cell adenomas in comparison with the control EGCG-untreated group. EGCG inhibited the phosphorylation of the IGF-1R, ERK (extracellular signal-regulated kinase), Akt, GSK-3β (glycogen synthase kinase-3β), Stat3, and JNK (c-Jun NH2-terminal kinase) proteins in the livers of experimental mice. The serum levels of insulin, IGF-1, IGF-2, free fatty acid, and TNF-α were all decreased by drinking EGCG, which also decreased the expression of TNF-α, interleukin (IL)-6, IL-1β, and IL-18 mRNAs in the livers. In addition, EGCG improved liver steatosis and activated the AMP-activated kinase protein in the liver. These findings suggest that EGCG prevents obesity-related liver tumorigenesis by inhibiting the IGF/IGF-1R axis, improving hyperinsulinemia, and attenuating chronic inflammation. EGCG, therefore, may be useful in the chemoprevention of liver tumorigenesis in obese individuals. Cancer Prev Res; 4(3); 396–403. ©2011 AACR.


Nutrition and Cancer | 2012

Preventive Effects of Curcumin on the Development of Azoxymethane-Induced Colonic Preneoplastic Lesions in Male C57BL/KsJ-db/db Obese Mice

Masaya Kubota; Masahito Shimizu; Hiroyasu Sakai; Yoichi Yasuda; Daishi Terakura; Atsushi Baba; Tomohiko Ohno; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki

Obesity-related metabolic abnormalities include a state of chronic inflammation and adipocytokine imbalance, which increase the risk of colon cancer. Curcumin, a component of turmeric, exerts both cancer preventive and antiinflammatory properties. Curcumin is also expected to have the ability to reverse obesity-related metabolic derangements. The present study examined the effects of curcumin on the development of azoxymethane (AOM)-induced colonic premalignant lesions in C57BL/KsJ-db/db (db/db) obese mice. Feeding with a diet containing 0.2% and 2.0% curcumin caused a significant reduction in the total number of colonic premalignant lesions compared with basal diet-fed mice. The expression levels of tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2 (COX-2) mRNAs on the colonic mucosa of AOM-treated mice were significantly decreased by curcumin administration. Dietary feeding with curcumin markedly activated AMP-activated kinase, decreased the expression of COX-2 protein, and inhibited nuclear factor-κB activity on the colonic mucosa of AOM-treated mice. Curcumin also increased the serum levels of adiponectin while conversely decreasing the serum levels of leptin and the weights of fat. In conclusion, curcumin inhibits the development of colonic premalignant lesions in an obesity-related colorectal carcinogenesis model, at least in part, by attenuating chronic inflammation and improving adipocytokine imbalance. Curcumin may be useful in the chemoprevention of colorectal carcinogenesis in obese individuals.


BMC Cancer | 2011

Pitavastatin suppresses diethylnitrosamine-induced liver preneoplasms in male C57BL/KsJ- db/db obese mice

Masahito Shimizu; Yoichi Yasuda; Hiroyasu Sakai; Masaya Kubota; Daishi Terakura; Atsushi Baba; Tomohiko Ohno; Takahiro Kochi; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki

BackgroundObesity and related metabolic abnormalities, including inflammation and lipid accumulation in the liver, play a role in liver carcinogenesis. Adipocytokine imbalances, such as decreased serum adiponectin levels, are also involved in obesity-related liver tumorigenesis. In the present study, we examined the effects of pitavastatin - a drug used for the treatment of hyperlipidemia - on the development of diethylnitrosamine (DEN)-induced liver preneoplastic lesions in C57BL/KsJ-db/db (db/db) obese mice.MethodsMale db/db mice were administered tap water containing 40 ppm DEN for 2 weeks and were subsequently fed a diet containing 1 ppm or 10 ppm pitavastatin for 14 weeks.ResultsAt sacrifice, feeding with 10 ppm pitavastatin significantly inhibited the development of hepatic premalignant lesions, foci of cellular alteration, as compared to that in the untreated group by inducing apoptosis, but inhibiting cell proliferation. Pitavastatin improved liver steatosis and activated the AMPK-α protein in the liver. It also decreased free fatty acid and aminotransferases levels, while increasing adiponectin levels in the serum. The serum levels of tumor necrosis factor (TNF)-α and the expression of TNF-α and interleukin-6 mRNAs in the liver were decreased by pitavastatin treatment, suggesting attenuation of the chronic inflammation induced by excess fat deposition.ConclusionsPitavastatin is effective in inhibiting the early phase of obesity-related liver tumorigenesis and, therefore, may be useful in the chemoprevention of liver cancer in obese individuals.


Biochemical and Biophysical Research Communications | 2011

Renin-angiotensin system inhibitors suppress azoxymethane-induced colonic preneoplastic lesions in C57BL/KsJ-db/db obese mice.

Masaya Kubota; Masahito Shimizu; Hiroyasu Sakai; Yoichi Yasuda; Tomohiko Ohno; Takahiro Kochi; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki

Obesity-related metabolic abnormalities, including chronic inflammation and oxidative stress, increase the risk of colorectal cancer. Dysregulation of the renin-angiotensin system (RAS) also plays a critical role in obesity-related metabolic disorders and in several types of carcinogenesis. In the present study, we examined the effects of an angiotensin-converting enzyme (ACE) inhibitor and angiotensin-II type 1 receptor blocker (ARB), both of which inhibit the RAS, on the development of azoxymethane (AOM)-initiated colonic premalignant lesions in C57BL/KsJ-db/db (db/db) obese mice. Male db/db mice were given 4 weekly subcutaneous injections of AOM (15 mg/kg body weight), and then, they received drinking water containing captopril (ACE inhibitor, 5mg/kg/day) or telmisartan (ARB, 5mg/kg/day) for 7 weeks. At sacrifice, administration of either captopril or telmisartan significantly reduced the total number of colonic premalignant lesions, i.e., aberrant crypt foci and β-catenin accumulated crypts, compared to that observed in the control group. The expression levels of TNF-α mRNA in the colonic mucosa of AOM-treated db/db mice were decreased by captopril and telmisartan. Captopril lowered the expression levels of TNF-α, IL-1β, IL-6, and PAI-1 mRNAs, while telmisartan lowered the expression levels of COX-2, IL-1β, IL-6, and PAI-1 mRNAs in the white adipose tissues of these mice. In addition, these agents significantly reduced the levels of urinary 8-OHdG, a surrogate marker of oxidative damage to DNA, in the experimental mice. These findings suggested that both ACE inhibitor and ARB suppress chemically-induced colon carcinogenesis by attenuating chronic inflammation and reducing oxidative stress in obese mice. Therefore, targeting dysregulation of the RAS might be an effective strategy for chemoprevention of colorectal carcinogenesis in obese individuals.


Carcinogenesis | 2012

Preventive effects of branched-chain amino acid supplementation on the spontaneous development of hepatic preneoplastic lesions in C57BL/KsJ-db/db obese mice.

Daishi Terakura; Masahito Shimizu; Junpei Iwasa; Atsushi Baba; Takahiro Kochi; Tomohiko Ohno; Masaya Kubota; Yohei Shirakami; Makoto Shiraki; Koji Takai; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki

Obesity and its associated disorders, such as non-alcoholic steatohepatitis, increase the risk of hepatocellular carcinoma. Branched-chain amino acids (BCAA), which improve protein malnutrition in patients with liver cirrhosis, reduce the risk of hepatocellular carcinoma in these patients with obesity. In the present study, the effects of BCAA supplementation on the spontaneous development of hepatic premalignant lesions, foci of cellular alteration, in db/db obese mice were examined. Male db/db mice were given a basal diet containing 3.0% of either BCAA or casein, a nitrogen-content-matched control of BCAA, for 36 weeks. On killing the mice, supplementation with BCAA significantly inhibited the development of foci of cellular alteration when compared with casein supplementation by inhibiting cell proliferation, but inducing apoptosis. BCAA supplementation increased the expression levels of peroxisome proliferator-activated receptor-γ, p21(CIP1) and p27(KIP1) messenger RNA and decreased the levels of c-fos and cyclin D1 mRNA in the liver. BCAA supplementation also reduced both the amount of hepatic triglyceride accumulation and the expression of interleukin (IL)-6, IL-1β, IL-18 and tumor necrosis factor-α mRNA in the liver. Increased macrophage infiltration was inhibited and the expression of IL-6, TNF-α, and monocyte chemoattractant protein-1 mRNA in the white adipose tissue were each decreased by BCAA supplementation. BCAA supplementation also reduced adipocyte size while increasing the expression of peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ and adiponectin mRNA in the white adipose tissue compared with casein supplementation. These findings indicate that BCAA supplementation inhibits the early phase of obesity-related liver tumorigenesis by attenuating chronic inflammation in both the liver and white adipose tissue. BCAA supplementation may be useful in the chemoprevention of liver tumorigenesis in obese individuals.


Cancer Letters | 2014

Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: Suppressing effects of EGCG on the development of liver lesions

Takahiro Kochi; Masahito Shimizu; Daishi Terakura; Atsushi Baba; Tomohiko Ohno; Masaya Kubota; Yohei Shirakami; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki

Non-alcoholic steatohepatitis (NASH), which involves hepatic inflammation and fibrosis, is associated with liver carcinogenesis. The activation of the renin-angiotensin system (RAS), which plays a key role in blood pressure regulation, promotes hepatic fibrogenesis. In this study, we investigated the effects of (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea catechins, on the development of glutathione S-transferase placental form (GST-P)-positive (GST-P(+)) foci, a hepatic preneoplastic lesion, in SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP-ZF) obese and hypertensive rats. Male 7-week-old SHRSP-ZF rats and control non-obese and normotensive WKY rats were fed a high fat diet and received intraperitoneal injections of carbon tetrachloride twice a week for 8weeks. The rats were also provided tap water containing 0.1% EGCG during the experiment. SHRSP-ZF rats presented with obesity, insulin resistance, dyslipidemia, an imbalance of adipokines in the serum, and hepatic steatosis. The development of GST-P(+) foci and liver fibrosis was markedly accelerated in SHRSP-ZF rats compared to that in control rats. Additionally, in SHRSP-ZF rats, RAS was activated and inflammation and oxidative stress were induced. Administration of EGCG, however, inhibited the development of hepatic premalignant lesions by improving liver fibrosis, inhibiting RAS activation, and attenuating inflammation and oxidative stress in SHRSP-ZF rats. In conclusion, obese and hypertensive SHRSP-ZF rats treated with a high fat diet and carbon tetrachloride displayed the histopathological and pathophysiological characteristics of NASH and developed GST-P(+) foci hepatic premalignant lesions, suggesting the model might be useful for the evaluation of NASH-related liver tumorigenesis. EGCG might also be able to prevent NASH-related liver fibrosis and tumorigenesis.


Cancer Letters | 2012

Synergistic growth inhibition of human hepatocellular carcinoma cells by acyclic retinoid and GW4064, a farnesoid X receptor ligand

Tomohiko Ohno; Yohei Shirakami; Masahito Shimizu; Masaya Kubota; Hiroyasu Sakai; Yoichi Yasuda; Takahiro Kochi; Hisashi Tsurumi; Hisataka Moriwaki

Abnormalities in the expression and function of retinoid X receptor (RXR), a master regulator of the nuclear receptor superfamily, are associated with the development of hepatocellular carcinoma (HCC). Dysfunction of farnesoid X receptor (FXR), one of the nuclear receptors that forms a heterodimer with RXR, also plays a role in liver carcinogenesis. In the present study, we examined the effects of acyclic retinoid (ACR), a synthetic retinoid targeting RXRα, plus GW4064, a ligand for FXR, on the growth of human HCC cells. We found that ACR and GW4064 preferentially inhibited the growth of HLE, HLF, and Huh7 human HCC cells in comparison with Hc normal hepatocytes. The combination of 1μM ACR plus 1μM GW4064 synergistically inhibited the growth of HLE cells by inducing apoptosis. The combined treatment with these agents acted cooperatively to induce cell cycle arrest in the G(0)/G(1) phase and inhibit the phosphorylation of RXRα, which is regarded as a critical factor for liver carcinogenesis, through inhibition of ERK and Stat3 phosphorylation. This combination also increased the expression levels of p21(CIP1) and SHP mRNA, while decreasing the levels of c-myc and cyclin D1 mRNA in HLE cells. In addition, a reporter assay indicated that the FXRE promoter activity was significantly increased by treatment with ACR plus GW4064. Our results suggest that ACR and GW4064 cooperatively inhibit RXRα phosphorylation, modulate the expression of FXR-regulated genes, thus resulting in the induction of apoptosis and the inhibition of growth in HCC cells. This combination might therefore be effective for the chemoprevention and chemotherapy of HCC.


PLOS ONE | 2015

Metformin Suppresses Diethylnitrosamine-Induced Liver Tumorigenesis in Obese and Diabetic C57BL/KsJ-+Leprdb/+Leprdb Mice

Tomohiko Ohno; Masahito Shimizu; Yohei Shirakami; Atsushi Baba; Takahiro Kochi; Masaya Kubota; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki

Obesity and related metabolic disorders, such as diabetes mellitus, raise the risk of liver carcinogenesis. Metformin, which is widely used in the treatment of diabetes, ameliorates insulin sensitivity. Metformin is also thought to have antineoplastic activities and to reduce cancer risk. The present study examined the preventive effect of metformin on the development of diethylnitrosamine (DEN)-induced liver tumorigenesis in C57BL/KsJ-+Leprdb/+Leprdb (db/db) obese and diabetic mice. The mice were given a single injection of DEN at 2 weeks of age and subsequently received drinking water containing metformin for 20 weeks. Metformin administration significantly reduced the multiplicity of hepatic premalignant lesions and inhibited liver cell neoplasms. Metformin also markedly decreased serum levels of insulin and reduced insulin resistance, and inhibited phosphorylation of Akt, mammalian target of rapamycin (mTOR), and p70S6 in the liver. Furthermore, serum levels of leptin were decreased, while those of adiponectin were increased by metformin. These findings suggest that metformin prevents liver tumorigenesis by ameliorating insulin sensitivity, inhibiting the activation of Akt/mTOR/p70S6 signaling, and improving adipokine imbalance. Therefore, metformin may be a potent candidate for chemoprevention of liver tumorigenesis in patients with obesity or diabetes.


PLOS ONE | 2016

The Role of Indoleamine 2,3-Dioxygenase in Diethylnitrosamine-Induced Liver Carcinogenesis

Yuhei Shibata; Takeshi Hara; Junji Nagano; Nobuhiko Nakamura; Tomohiko Ohno; Soranobu Ninomiya; Hiroyasu Ito; Takuji Tanaka; Kuniaki Saito; Mitsuru Seishima; Masahito Shimizu; Hisataka Moriwaki; Hisashi Tsurumi

Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing intracellular enzyme of the L-kynurenine pathway, causes preneoplastic cells and tumor cells to escape the immune system by inducing immune tolerance; this mechanism might be associated with the development and progression of human malignancies. In the present study, we investigated the role of IDO in diethylnitrosamine (DEN)-induced hepatocarcinogenesis by using IDO-knockout (KO) mice. To induce hepatocellular carcinoma (HCC), hepatic adenoma, and preneoplastic hepatocellular lesions termed foci of cellular alteration (FCA), male IDO-wild-type (WT) and IDO-KO mice with a C57BL/6J background received a single intraperitoneal injection of DEN at 2 weeks of age. The mice were sacrificed to evaluate the development of FCA and hepatocellular neoplasms. HCC overexpressed IDO and L-kynurenine compared to surrounding normal tissue in the DEN-treated IDO-WT mice. The number and cell proliferative activity of FCAs, and the incidence and multiplicity of HCC were significantly greater in the IDO-WT than in the IDO-KO mice. The expression levels of the IDO protein, of L-kynurenine, and of IFN-γ, COX-2, TNF-α, and Foxp3 mRNA were also significantly increased in the DEN-induced hepatic tumors that developed in the IDO-WT mice. The mRNA expression levels of CD8, perforin and granzyme B were markedly increased in hepatic tumors developed in IDO-KO mice. Moreover, Foxp3-positive inflammatory cells had infiltrated into the livers of DEN-treated IDO-WT mice, whereas fewer cells had infiltrated into the livers of IDO-KO mice. Induction of IDO and elevation of L-kynurenine might play a critical role in both the early and late phase of liver carcinogenesis. Our findings suggest that inhibition of IDO might offer a promising strategy for the prevention of liver cancer.


Oncology Letters | 2014

Preventive effects of the angiotensin‑converting enzyme inhibitor, captopril, on the development of azoxymethane‑induced colonic preneoplastic lesions in diabetic and hypertensive rats

Takahiro Kochi; Masahito Shimizu; Tomohiko Ohno; Atsushi Baba; Takafumi Sumi; Masaya Kubota; Yohei Shirakami; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki

Metabolic syndrome (Mets), including diabetes and hypertension, increases the risk of colorectal cancer via the induction of chronic inflammation, acceleration of oxidative stress, and activation of the renin-angiotensin system. The present study examined the possible inhibitory effects of captopril, an angiotensin-converting enzyme (ACE) inhibitor and antihypertensive drug, on the development of azoxymethane (AOM)-induced colonic premalignant lesions, aberrant crypt foci (ACF), in SHRSP.Z-Leprfa/IzmDmcr (SHRSP-ZF) diabetic and hypertensive rats. Male 6-week-old SHRSP-ZF rats were administered two, weekly intraperitoneal injections of AOM (20 mg/kg body weight). Following the second injection, the rats received drinking water containing captopril (8 mg/kg/day) for two weeks. At sacrifice, captopril administration significantly lowered the blood pressure and reduced the total number and size of ACF compared with those observed in the untreated group. The serum levels of angiotensin-II and the expression levels of ACE and angiotensin-II type 1 receptor mRNA on the colonic mucosa decreased following captopril treatment. Captopril also reduced the urinary 8-hydroxy-2′-deoxyguanosine levels and the serum derivatives of reactive oxygen metabolites levels, both of which are oxidative stress markers, but increased the mRNA levels of catalase, an antioxidant enzyme, in the colonic epithelium. Moreover, the expression levels of tumor necrosis factor-α, interleukin-18, monocyte chemoattractant protein-1, inducible nitric oxide synthase, vascular endothelial growth factor and proliferating cell nuclear antigen mRNA in the colonic epithelium were decreased significantly following captopril administration. These observations suggested that captopril prevents the development of ACF by inhibiting renin-angiotensin system activation and attenuating inflammation and oxidative stress in SHRSP-ZF rats. Therefore, targeting Mets-related pathophysiological conditions, including renin-angiotensin system activation, may be an effective strategy to prevent colorectal carcinogenesis in patients with Mets, particularly those with hypertension.

Collaboration


Dive into the Tomohiko Ohno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takuji Tanaka

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge