Yohei Shirakami
Gifu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yohei Shirakami.
Cancer Letters | 2008
Masahito Shimizu; Yohei Shirakami; Hiroyasu Sakai; Hideharu Tatebe; Takayuki Nakagawa; Yukihiko Hara; I. Bernard Weinstein; Hisataka Moriwaki
The receptor tyrosine kinase (RTK) insulin like growth factor-1 (IGF-1)/IGF-1 receptor (IGF-1R) axis plays an important role in the development of hepatocellular carcinoma (HCC). EGCG inhibits activation of the various types of RTKs and that this is associated with inhibition of multiple downstream signaling pathways. In this study we examined the effects of EGCG on activity of the IGF/IGF-1R axis in HepG2 human HCC cells which express constitutive activation of this axis. The level of phosphorylated (i.e. activated) form of the IGF-1R protein (p-IGF-1R) was increased in a series of human HCC cell lines when compared with the Hc normal human hepatocytes. EGCG preferentially inhibited growth of HepG2 cells when compared with Hc cells. Treatment of HepG2 cells with EGCG induced apoptosis and caused a decrease in the p-IGF-1R protein and its downstream signaling molecules including the p-ERK, p-Akt, p-Stat-3, and p-GSK-3β proteins, both in the absence or presence of ligand stimulation. EGCG also decreased the levels of both IGF-1 and IGF-2 proteins and mRNAs, but increased the levels of the IGFBP-3 protein. These findings suggest that EGCG can overcome the stimulatory effects of IGFs on the IGF-1R dependent signaling pathway, thus expanding the roles of EGCG as an inhibitor of critical RTKs involved in HCC cell proliferation. These results provide further evidence that EGCG may be useful in the chemoprevention or treatment of liver cancer.
Chemico-Biological Interactions | 2010
Masahito Shimizu; Yohei Shirakami; Hiroyasu Sakai; Yoichi Yasuda; Masaya Kubota; Seiji Adachi; Hisashi Tsurumi; Yukihiko Hara; Hisataka Moriwaki
(-)-Epigallocatechin gallate (EGCG), the major constituent of green tea, inhibits the growth of colorectal cancer cells by inhibiting the activation of various types of receptor tyrosine kinases (RTKs). The RTK vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis induces tumor angiogenesis in colorectal cancer. This study examined the effects of EGCG on the activity of the VEGF/VEGFR axis and the expression of hypoxia-inducible factor (HIF)-1alpha, which promotes angiogenesis by elevating VEGF levels, in human colorectal cancer cells. Total and phosphorylated (i.e., activated) form (p-VEGFR-2) of VEGFR-2 proteins were overexpressed in a series of human colorectal cancer cell lines. Within 3h, EGCG caused a decrease in the expression of HIF-1alpha protein and VEGF, HIF-1alpha, insulin-like growth factor (IGF)-1, IGF-2, epidermal growth factor (EGF), and heregulin mRNAs in SW837 colorectal cancer cells, which express a constitutively activated VEGF/VEGFR axis. A decrease was also observed in the expression of VEGFR-2, p-VEGFR-2, p-IGF-1 receptor, p-ERK, and p-Akt proteins within 6h after EGCG treatment. Drinking EGCG significantly inhibited the growth of SW837 xenografts in nude mice, and this was associated with the inhibition of the expression and activation of VEGFR-2. The consumption of EGCG also inhibited activation of ERK and Akt, both of which are downstream signaling molecules of the VEGF/VEGFR axis, and reduced the expression of VEGF mRNA in xenografts. These findings suggest that EGCG may exert, at least in part, growth-inhibitory effects on colorectal cancer cells by inhibiting the activation of the VEGF/VEGFR axis through suppressing the expression of HIF-1alpha and several major growth factors. EGCG may therefore be useful in the chemoprevention and/or treatment of colorectal cancer.
Cancer Science | 2009
Yohei Shirakami; Masahito Shimizu; Seiji Adachi; Hiroyasu Sakai; Takayuki Nakagawa; Yoichi Yasuda; Hisashi Tsurumi; Yukihiko Hara; Hisataka Moriwaki
The receptor tyrosine kinase vascular endothelial growth factor (VEGF) receptor (VEGFR) plays an important role in tumor angiogenesis of hepatocellular carcinoma (HCC). (–)‐Epigallocatechin gallate (EGCG), the major biologically active component of green tea, inhibits growth in a variety of human cancer cells by inhibiting the activation of several types of receptor tyrosine kinases. In this study, we examined the effects of EGCG on the activity of the VEGF–VEGFR axis in human HCC cells. The levels of total and phosphorylated (i.e. activated) form of VEGFR‐2 protein (p‐VEGFR‐2) were observed to increase in a series of human HCC cell lines in comparison to the Hc normal human hepatocytes. EGCG preferentially inhibited the growth of HuH7 HCC cells, which express constitutive activation of the VEGF–VEGFR axis, in comparison to Hc cells. Treatment of HuH7 cells with EGCG caused a time‐ and dose‐dependent decrease in the expression of VEGFR‐2 and p‐VEGFR‐2 proteins. The production of VEGF from HuH7 cells was reduced by treatment with EGCG. Drinking of EGCG significantly inhibited the growth of HuH7 xenografts in nude mice and this was associated with inhibition of the activation of VEGFR‐2 and its related downstream signaling molecules, including ERK and Akt. EGCG drinking also decreased the expression of Bcl‐xL protein and VEGF mRNA in the xenografts. These findings suggest that EGCG can exert, at least in part, its growth‐inhibitive effect on HCC cells by inhibiting the VEGF–VEGFR axis. EGCG might therefore be useful in the treatment of HCC. (Cancer Sci 2009; 100: 1957–1962)
International Journal of Molecular Sciences | 2008
Masahito Shimizu; Yohei Shirakami; Hisataka Moriwaki
Tea is one of the most popular beverages consumed worldwide. Epidemiologic studies show an inverse relationship between consumption of tea, especially green tea, and development of cancers. Numerous in vivo and in vitro studies indicate strong chemopreventive effects for green tea and its constituents against cancers of various organs. (–)-Epigallocatechin-3-gallate (EGCG), the major catechin in green tea, appears to be the most biologically active constituent in tea with respect to inhibiting cell proliferation and inducing apoptosis in cancer cells. Recent studies indicate that the receptor tyrosine kinases (RTKs) are one of the critical targets of EGCG to inhibit cancer cell growth. EGCG inhibits the activation of EGFR (erbB1), HER2 (neu/erbB2) and also HER3 (neu/erbB3), which belong to subclass I of the RTK superfamily, in various types of human cancer cells. The activation of IGF-1 and VEGF receptors, the other members of RTK family, is also inhibited by EGCG. In addition, EGCG alters membrane lipid organization and thus inhibits the dimerization and activation of EGFR. Therefore, EGCG inhibits the Ras/MAPK and PI3K/Akt signaling pathways, which are RTK-related cell signaling pathways, as well as the activation of AP-1 and NF-κB, thereby modulating the expression of target genes which are associated with induction of apoptosis and cell cycle arrest in cancer cells. These findings are significant because abnormalities in the expression and function of RTKs and their downstream effectors play a critical role in the development of several types of human malignancies. In this paper we review evidence indicating that EGCG exerts anticancer effects, at least in part, through inhibition of activation of the specific RTKs and conclude that targeting RTKs and related signaling pathway by tea catechins might be a promising strategy for the prevention of human cancers.
Cancer Science | 2010
Junpei Iwasa; Masahito Shimizu; Makoto Shiraki; Yohei Shirakami; Hiroyasu Sakai; Yoichi Terakura; Koji Takai; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki
Obesity and related metabolic abnormalities, including insulin resistance, are risk factors for hepatocellular carcinoma in non‐alcoholic steatohepatitis as well as in chronic viral hepatitis. Branched‐chain amino acids (BCAA), which improve insulin resistance, inhibited obesity‐related colon carcinogenesis in a rodent model, and also reduced the incidence of hepatocellular carcinoma in obese patients with liver cirrhosis. In the present study, we determined the effects of BCAA on the development of diethylnitrosamine (DEN)‐induced liver tumorigenesis in obese C57BL/KsJ‐db/db (db/db) mice with diabetes mellitus. Male db/db mice were given tap water containing 40 ppm DEN for an initial 2 weeks and thereafter they received a basal diet containing 3.0% of BCAA or casein, which served as a nitrogen content‐matched control of BCAA, throughout the experiment. Supplementation with BCAA significantly reduced the total number of foci of cellular alteration, a premalignant lesion of the liver, and the expression of insulin‐like growth factor (IGF)‐1, IGF‐2, and IGF‐1 receptor in the liver when compared to the casein supplementation. BCAA supplementation for 34 weeks also significantly inhibited both the development of hepatocellular neoplasms and the proliferation of hepatocytes in comparison to the basal diet or casein‐fed groups. Supplementation with BCAA improved liver steatosis and fibrosis and inhibited the expression of α‐smooth muscle actin in the DEN‐treated db/db mice. The serum levels of glucose and leptin decreased by dietary BCAA, whereas the value of the quantitative insulin sensitivity check index increased by this agent, indicating the improvement of insulin resistance and hyperleptinemia. In conclusion, oral BCAA supplementation improves insulin resistance and prevents the development of liver tumorigenesis in obese and diabetic mice. (Cancer Sci 2009)
Cancer Prevention Research | 2011
Masahito Shimizu; Hiroyasu Sakai; Yohei Shirakami; Yoichi Yasuda; Masaya Kubota; Daishi Terakura; Atsushi Baba; Tomohiko Ohno; Yukihiko Hara; Takuji Tanaka; Hisataka Moriwaki
Obesity and related metabolic abnormalities, including insulin resistance and a state of chronic inflammation, increase the risk of hepatocellular carcinoma. Abnormal activation of the insulin-like growth factor (IGF)/ IGF-1 receptor (IGF-1R) axis is also involved in obesity-related liver tumorigenesis. In the present study, we examined the effects of (−)-epigallocatechin gallate (EGCG), a major biologically active component of green tea, on the development of diethylnitrosamine (DEN)-induced liver tumorigenesis in C57BL/KsJ-db/db (db/db) obese mice. Male db/db mice were given tap water containing 40 ppm DEN for 2 weeks and then they received drinking water containing 0.1% EGCG for 34 weeks. At sacrifice, drinking water with EGCG significantly inhibited the development of liver cell adenomas in comparison with the control EGCG-untreated group. EGCG inhibited the phosphorylation of the IGF-1R, ERK (extracellular signal-regulated kinase), Akt, GSK-3β (glycogen synthase kinase-3β), Stat3, and JNK (c-Jun NH2-terminal kinase) proteins in the livers of experimental mice. The serum levels of insulin, IGF-1, IGF-2, free fatty acid, and TNF-α were all decreased by drinking EGCG, which also decreased the expression of TNF-α, interleukin (IL)-6, IL-1β, and IL-18 mRNAs in the livers. In addition, EGCG improved liver steatosis and activated the AMP-activated kinase protein in the liver. These findings suggest that EGCG prevents obesity-related liver tumorigenesis by inhibiting the IGF/IGF-1R axis, improving hyperinsulinemia, and attenuating chronic inflammation. EGCG, therefore, may be useful in the chemoprevention of liver tumorigenesis in obese individuals. Cancer Prev Res; 4(3); 396–403. ©2011 AACR.
Cancer Science | 2010
Yoichi Yasuda; Masahito Shimizu; Yohei Shirakami; Hiroyasu Sakai; Masaya Kubota; Kazuya Hata; Yoshinobu Hirose; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki
Obesity and related metabolic abnormalities are risk factors for colorectal cancer. A state of chronic inflammation and adipocytokine imbalance may play a role in colorectal carcinogenesis. Statins, which are commonly used for the treatment of hyperlipidemia, are known to possess anti‐inflammatory effects. Statins also exert chemopreventive properties against various cancers. The present study examined the effects of pitavastatin, a recently developed lipophilic statin, on the development of azoxymethane (AOM)‐initiated colonic premalignant lesions in C57BL/KsJ‐db/db (db/db) obese mice. Male db/db mice were administrated weekly subcutaneous injections of AOM (15 mg/kg body weight) for 4 weeks and then were subsequently fed a diet containing 1 ppm or 10 ppm pitavastatin for 8 weeks. Feeding with either dose of pitavastatin significantly reduced the number of colonic premalignant lesions, β‐catenin accumulated crypts, by inhibiting proliferation and the surrounding inflammation. Pitavastatin increased the serum levels of adiponectin while conversely decreasing the serum levels of total cholesterol, tumor necrosis factor‐α (TNF‐α), interleukin (IL)‐6, IL‐18, and leptin. Pitavastatin also caused a significant increase in the expression of phosphorylated form of the AMP‐activated kinase (AMPK) protein on the colonic mucosa of AOM‐treated mice. In addition, the expression levels of TNF‐α, IL‐6, IL‐18, and COX‐2 mRNAs on the colonic mucosa of AOM‐treated mice were decreased by treatment with this agent. These findings suggest that pitavastatin attenuates chronic inflammation and improves the imbalance of adipocytokines, both of which are caused by the presence of excess adipose tissues, thereby preventing the development of colonic premalignancies in an obesity‐related colon cancer model. Therefore, some types of statins, including pitavastatin, may be a useful chemoprevention modality for colon cancer in obese individuals. (Cancer Sci 2010)
Clinical Cancer Research | 2009
Masahito Shimizu; Yohei Shirakami; Junpei Iwasa; Makoto Shiraki; Yoichi Yasuda; Kazuya Hata; Yoshinobu Hirose; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki
Purpose: Obesity and related metabolic abnormalities, including insulin resistance and activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis, are risk factors for colon cancer. Supplementation with branched-chain amino acids (BCAA) reduces the risk of liver cancer in cirrhotic patients who are obese, and this has been associated with an improvement of insulin resistance. The present study examined the effects of BCAA on the development of azoxymethane (AOM)-initiated colonic premalignant lesions in C57BL/KsJ-db/db (db/db) mice that were obese and had hyperinsulinemia. Experimental Design: Male db/db mice were given 4 weekly s.c. injections of AOM (15 mg/kg of body weight) and then they were fed a diet containing 3.0% BCAA or casein, a nitrogenc content–matched control diet, for 7 weeks. Results: Feeding with BCAA caused a significant reduction in the number of total aberrant crypt foci and β-catenin accumulated crypts, both of which are premalignant lesions of the colon, compared with the control diet–fed groups. BCAA supplementation caused a marked decrease in the expression of IGF-IR, the phosphorylated form of IGF-IR, phosphorylated glycogen synthase kinase 3β, phosphorylated Akt, and cyclooxygenase-2 proteins on the colonic mucosa of AOM-treated mice. The serum levels of insulin, IGF-I, IGF-II, triglyceride, total cholesterol, and leptin were also decreased by supplementation with BCAA. Conclusion: BCAA supplementation in diet improves insulin resistance and inhibits the activation of the IGF/IGF-IR axis, thereby preventing the development of colonic premalignancies in an obesity-related colon cancer model that was also associated with hyperlipidemia and hyperinsulinemia. BCAA, therefore, may be a useful chemoprevention modality for colon cancer in obese people.
Current Drug Targets | 2012
Yohei Shirakami; Masahito Shimizu; Hisataka Moriwaki
Many epidemiological studies and a large number of experimental studies using a variety of animal models have observed that consumption or administration of green tea appears to exert cancer chemopreventive activity. Based on the results of numerous laboratory cell culture investigations, several mechanisms have been hypothesized to underlie the anti-cancer activity of green tea catechins, especially that of (-)-epigallocatechin-3-gallate (EGCG), the most abundant and active constituent in green tea. These mechanisms include promotion of anti-oxidant activity, inhibition of NF-κB and AP-1, regulation of the cell cycle, inhibition of receptor tyrosine kinase pathways, control of epigenetic modifications, and modulation of the immune system. Several recent interventional studies examining the anti-carcinogenic properties of green tea catechins in humans have yielded promising results that suggest the possibility of their application to human clinical trials. This review article analyzes the results of these studies to explicate the effects of consumption or administration of green tea and its constituents on malignancies observed to date and discuss future directions in this research field.
Cancer Prevention Research | 2011
Masahito Shimizu; Hiroyasu Sakai; Yohei Shirakami; Junpei Iwasa; Yoichi Yasuda; Masaya Kubota; Koji Takai; Hisashi Tsurumi; Takuji Tanaka; Hisataka Moriwaki
Obesity and the related metabolic abnormalities are associated with increased risk of hepatocellular carcinoma (HCC). Malfunctioning of retinoid X receptor (RXR) α due to phosphorylation by Ras/MAPK also plays a critical role in liver carcinogenesis. In the present study, we examined the effects of acyclic retinoid (ACR), which targets RXRα, on the development of diethylnitrosamine (DEN)-induced liver tumorigenesis in C57BLKS/J- +Leprdb/+Leprdb (db/db) obese mice. Male db/db mice were given tap water containing 40 ppm DEN for 2 weeks, after which they were fed a diet containing 0.03% or 0.06% of ACR throughout the experiment. In mice treated with either dose of ACR for 34 weeks, the development of liver cell adenomas was significantly inhibited as compared with basal diet-fed mice. ACR markedly inhibited the activation of Ras and phosphorylation of the ERK (extracellular signal-regulated kinase) and RXRα proteins in the livers of experimental mice. It also increased the expression of RAR β and p21CIP1 mRNA while decreasing the expression of cyclin D1, c-Fos, and c-Jun mRNA in the liver, thereby restoring RXRα function. Administration of ACR improved liver steatosis and activated the AMPK protein. The serum levels of insulin decreased by ACR treatment, whereas the quantitative insulin sensitivity check index (QUICKI) values increased, indicating improved insulin sensitivity. The serum levels of TNF-α and the expression levels of TNF- α, IL-6, and IL-1 β mRNA in the livers of DEN-treated db/db mice were decreased by ACR treatment, suggesting attenuation of the chronic inflammation induced by excessive fatty deposits. ACR may be, therefore, useful in the chemoprevention of obesity-related HCC. Cancer Prev Res; 4(1); 128–36. ©2010 AACR.