Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomohiro Kono is active.

Publication


Featured researches published by Tomohiro Kono.


Nature | 2008

Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes.

Toshiaki Watanabe; Yasushi Totoki; Atsushi Toyoda; Masahiro Kaneda; Satomi Kuramochi-Miyagawa; Yayoi Obata; Hatsune Chiba; Yuji Kohara; Tomohiro Kono; Toru Nakano; M. Azim Surani; Yoshiyuki Sakaki; Hiroyuki Sasaki

RNA interference (RNAi) is a mechanism by which double-stranded RNAs (dsRNAs) suppress specific transcripts in a sequence-dependent manner. dsRNAs are processed by Dicer to 21–24-nucleotide small interfering RNAs (siRNAs) and then incorporated into the argonaute (Ago) proteins. Gene regulation by endogenous siRNAs has been observed only in organisms possessing RNA-dependent RNA polymerase (RdRP). In mammals, where no RdRP activity has been found, biogenesis and function of endogenous siRNAs remain largely unknown. Here we show, using mouse oocytes, that endogenous siRNAs are derived from naturally occurring dsRNAs and have roles in the regulation of gene expression. By means of deep sequencing, we identify a large number of both ∼25–27-nucleotide Piwi-interacting RNAs (piRNAs) and ∼21-nucleotide siRNAs corresponding to messenger RNAs or retrotransposons in growing oocytes. piRNAs are bound to Mili and have a role in the regulation of retrotransposons. siRNAs are exclusively mapped to retrotransposons or other genomic regions that produce transcripts capable of forming dsRNA structures. Inverted repeat structures, bidirectional transcription and antisense transcripts from various loci are sources of the dsRNAs. Some precursor transcripts of siRNAs are derived from expressed pseudogenes, indicating that one role of pseudogenes is to adjust the level of the founding source mRNA through RNAi. Loss of Dicer or Ago2 results in decreased levels of siRNAs and increased levels of retrotransposon and protein-coding transcripts complementary to the siRNAs. Thus, the RNAi pathway regulates both protein-coding transcripts and retrotransposons in mouse oocytes. Our results reveal a role for endogenous siRNAs in mammalian oocytes and show that organisms lacking RdRP activity can produce functional endogenous siRNAs from naturally occurring dsRNAs.


Nature | 2010

Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells

Matthias Stadtfeld; Effie Apostolou; Hidenori Akutsu; Atsushi Fukuda; Patricia Follett; Sridaran Natesan; Tomohiro Kono; Toshi Shioda

Induced pluripotent stem cells (iPSCs) have been generated by enforced expression of defined sets of transcription factors in somatic cells. It remains controversial whether iPSCs are molecularly and functionally equivalent to blastocyst-derived embryonic stem (ES) cells. By comparing genetically identical mouse ES cells and iPSCs, we show here that their overall messenger RNA and microRNA expression patterns are indistinguishable with the exception of a few transcripts encoded within the imprinted Dlk1–Dio3 gene cluster on chromosome 12qF1, which were aberrantly silenced in most of the iPSC clones. Consistent with a developmental role of the Dlk1–Dio3 gene cluster, these iPSC clones contributed poorly to chimaeras and failed to support the development of entirely iPSC-derived animals (‘all-iPSC mice’). In contrast, iPSC clones with normal expression of the Dlk1–Dio3 cluster contributed to high-grade chimaeras and generated viable all-iPSC mice. Notably, treatment of an iPSC clone that had silenced Dlk1–Dio3 with a histone deacetylase inhibitor reactivated the locus and rescued its ability to support full-term development of all-iPSC mice. Thus, the expression state of a single imprinted gene cluster seems to distinguish most murine iPSCs from ES cells and allows for the prospective identification of iPSC clones that have the full development potential of ES cells.


Nature | 2004

Birth of parthenogenetic mice that can develop to adulthood

Tomohiro Kono; Yayoi Obata; Quiong Wu; Katsutoshi Niwa; Yukiko Ono; Yuji Yamamoto; Eun Sung Park; Jeong-Sun Seo; Hidehiko Ogawa

Only mammals have relinquished parthenogenesis, a means of producing descendants solely from maternal germ cells. Mouse parthenogenetic embryos die by day 10 of gestation. Bi-parental reproduction is necessary because of parent-specific epigenetic modification of the genome during gametogenesis. This leads to unequal expression of imprinted genes from the maternal and paternal alleles. However, there is no direct evidence that genomic imprinting is the only barrier to parthenogenetic development. Here we show the development of a viable parthenogenetic mouse individual from a reconstructed oocyte containing two haploid sets of maternal genome, derived from non-growing and fully grown oocytes. This development was made possible by the appropriate expression of the Igf2 and H19 genes with other imprinted genes, using mutant mice with a 13-kilobase deletion in the H19 gene as non-growing oocytes donors. This full-term development is associated with a marked reduction in aberrantly expressed genes. The parthenote developed to adulthood with the ability to reproduce offspring. These results suggest that paternal imprinting prevents parthenogenesis, ensuring that the paternal contribution is obligatory for the descendant.


PLOS Genetics | 2012

Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks

Hisato Kobayashi; Takayuki Sakurai; Misaki Imai; Nozomi Takahashi; Atsushi Fukuda; Obata Yayoi; Shun Sato; Kazuhiko Nakabayashi; Kenichiro Hata; Yusuke Sotomaru; Yutaka Suzuki; Tomohiro Kono

Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells.


Journal of Biological Chemistry | 2002

Maternal Primary Imprinting Is Established at a Specific Time for Each Gene throughout Oocyte Growth

Yayoi Obata; Tomohiro Kono

Primary imprinting during gametogenesis governs the monoallelic expression/repression of imprinted genes in embryogenesis. Previously, we showed that maternal primary imprinting is disrupted in neonate-derived non-growing oocytes. Here, to investigate precisely when and in what order maternal primary imprinting progresses, we produced parthenogenetic embryos containing one genome from a non-growing or growth-stage oocyte from 1- to 20-day-old mice and one from a fully grown oocyte of adult mice. We used these embryos to analyze the expression of eight imprinted genes:Peg1/Mest, Peg3, Snrpn,Znf127, Ndn, Impact,Igf2r, and p57 KIP2 . The results showed that the imprinting signals for each gene were not all imposed together at a specific time during oocyte growth but rather occurred throughout the period from primary to antral follicle stage oocytes. The developmental ability of the constructed parthenogenetic embryos was gradually reduced as the nuclear donor oocytes grew. These studies provide the first insight into the process of primary imprinting during oocyte growth.


Mechanisms of Development | 2005

Pluripotential competence of cells associated with Nanog activity.

Shin-ya Hatano; Masako Tada; Hironobu Kimura; Shinpei Yamaguchi; Tomohiro Kono; Toru Nakano; Hirofumi Suemori; Norio Nakatsuji; Takashi Tada

Nanog is a novel pluripotential cell-specific gene that plays a crucial role in maintaining the undifferentiated state of early postimplantation embryos and embryonic stem (ES) cells. We have explored the expression pattern and function of Nanog and a Nanog-homologue, Nanog-ps1.Nanog-ps1 was mapped on Chromosome 7 and shown to be a pseudogene. Immunocytochemical analysis in vivo showed that the NANOG protein was absent in unfertilized oocytes, and was detected in cells of morula-stage embryos, the inner cell mass of blastocysts and the epiblast of E6.5 and E7.5 embryos, but not in primordial germ cells of early postimplantation embryos. In monkey and human ES cells, NANOG expression was restricted to undifferentiated cells. Furthermore, reactivation of the somatic cell-derived Nanog was tightly linked with nuclear reprogramming induced by cell hybridization with ES cells and by nuclear transplantation into enucleated oocytes. Notably, mouse Nanog (+/-) ES cells, which produced approximately half the amount of NANOG produced by wild-type ES cells, readily differentiated to multi-lineage cells in culture medium including LIF. The labile undifferentiated state was fully rescued by constitutive expression of exogenous Nanog. Thus, the activity of Nanog is tightly correlated with an undifferentiated state of cells even in nuclear reprogrammed somatic cells. Nanog may function as a key regulator for sustaining pluripotency in a dose-dependent manner.


Genes to Cells | 2006

Oocyte growth-dependent progression of maternal imprinting in mice.

Hitoshi Hiura; Yayoi Obata; Junichi Komiyama; Motomu Shirai; Tomohiro Kono

In mammals, some genes categorized as imprinted genes are exclusively expressed either from maternal or paternal allele. This parental‐origin‐specific gene expression is regulated by epigenetic modification of DNA methylation in differentially methylated region (DMR), which is independently imposed during oogenesis and spermatogenesis. It is known that methylation of DMR in the female germ line is established during oocyte growth phase. However, the cause of the progression of methylation on DMR, due to either aging of mice or growth‐size of oocyte was unclear up to now. Here, we analyzed the methylation of DMR for each eight imprinted genes (Igf2r, Lit1, Zac1, Snrpn, Peg1/Mest, Impact, Meg1/Grb10, and H19) by bisulfite sequencing methylation assay, using oocytes from 10 dpp (days post partum), 15 dpp, 20 dpp, and adult mice. To find whether the size of oocytes is the cause of methylation, above oocytes were classified into seven groups (each oocyte diameter ranging from 40 to 75 µm with intervals of 5 µm). The results from juvenile mice oocytes showed that DMR methylation progressed according to oocyte growth each imprinted gene. More than 85% of DMR methylation was achieved for both Igf2r, Zac1 & Lit1 with oocyte size of reaching 55 µm and Snrpn, Peg1/Mest, Impact, and Meg1/Grb10 with oocyte size of reaching 60 µm. Preferential methylation of maternal allele was observed in Zac1 and Peg1/Mest of juvenile oocytes and in Snrpn of juvenile and adult oocytes. The oocyte size‐dependent‐methylation progressed equally for all three different‐age juvenile mice. The size‐dependent‐methylation was also recognized in the growing oocytes collected from adult mice, although the progress is slightly slower than that of juvenile mice. From these results, we concluded that DNA methylation is established with oocyte size dependent manner, not with aging of mice.


Genes to Cells | 2000

The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development

Takayuki Ueda; Kuniya Abe; Asuka Miura; Misako Yuzuriha; Mohamad Zubair; Motoko Noguchi; Katsutoshi Niwa; Yosuke Kawase; Tomohiro Kono; Yoichi Matsuda; Hirokazu Fujimoto; Hideo Shibata; Yoshihide Hayashizaki; Hiroyuki Sasaki

Germline‐specific differential DNA methylation that persists through fertilization and embryonic development is thought to be the ‘imprint’ distinguishing the parental alleles of imprinted genes. If such methylation is to work as the imprinting mechanism, however, it has to be reprogrammed following each passage through the germline. Previous studies on maternally methylated genes have shown that their methylation imprints are first erased in primordial germ cells (PGCs) and then re‐established during oocyte growth.


Biology of Reproduction | 2001

Cloned Mice from Fetal Fibroblast Cells Arrested at Metaphase by a Serial Nuclear Transfer

Yukiko Ono; Nobuhiro Shimozawa; Mamoru Ito; Tomohiro Kono

Abstract Cloning using G0-arrested somatic cells has led to the suggestion that this stage of the cell cycle is necessary for the success of cloning. In this study we report that cloned mice can be generated from fetal fibroblasts arrested at metaphase of the cell cycle. The procedure involves fusing a metaphase-arrested fetal fibroblast to an enucleated oocyte. After parthenogenetic activation a polar body and single diploid pronucleus were formed. Some of these were allowed to develop to the blastocyst stage, while others were enucleated and the nucleus was transferred to an enucleated fertilized 1-cell embryo. After the single transfer technique, 2 out of 164 developed to late stages of gestation were dead with gross abnormalities. However, after the serial nuclear transfer, 5 out of 272 embryos were recovered live at Day 19.5, and 2 of these went on to develop into apparently normal adults. All of the cloned embryos showed severe placental hypertrophy and defective differentiation of placental tissues. This study illustrates that reprogramming can occur after nuclear transfer at metaphase of the cell cycle.


Genome Research | 2013

High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice

Hisato Kobayashi; Takayuki Sakurai; Fumihito Miura; Misaki Imai; Kentaro Mochiduki; Eikichi Yanagisawa; Akihiko Sakashita; Takuya Wakai; Yutaka Suzuki; Takashi Ito; Yasuhisa Matsui; Tomohiro Kono

Dynamic epigenetic reprogramming occurs during mammalian germ cell development, although the targets of this process, including DNA demethylation and de novo methylation, remain poorly understood. We performed genome-wide DNA methylation analysis in male and female mouse primordial germ cells at embryonic days 10.5, 13.5, and 16.5 by whole-genome shotgun bisulfite sequencing. Our high-resolution DNA methylome maps demonstrated gender-specific differences in CpG methylation at genome-wide and gene-specific levels during fetal germline progression. There was extensive intra- and intergenic hypomethylation with erasure of methylation marks at imprinted, X-linked, or germline-specific genes during gonadal sex determination and partial methylation at particular retrotransposons. Following global demethylation and sex determination, CpG sites switched to de novo methylation in males, but the X-linked genes appeared resistant to the wave of de novo methylation. Significant differential methylation at a subset of imprinted loci was identified in both genders, and non-CpG methylation occurred only in male gonocytes. Our data establish the basis for future studies on the role of epigenetic modifications in germline development and other biological processes.

Collaboration


Dive into the Tomohiro Kono's collaboration.

Top Co-Authors

Avatar

Yayoi Obata

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Hisato Kobayashi

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manabu Kawahara

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Hidehiko Ogawa

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihiko Sakashita

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Yukiko Ono

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Ichinoe

Tokyo University of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge