Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yayoi Obata is active.

Publication


Featured researches published by Yayoi Obata.


Nature | 2016

Reconstitution in vitro of the entire cycle of the mouse female germ line

Orie Hikabe; Nobuhiko Hamazaki; Go Nagamatsu; Yayoi Obata; Yuji Hirao; Norio Hamada; So Shimamoto; Takuya Imamura; Kinichi Nakashima; Mitinori Saitou; Katsuhiko Hayashi

The female germ line undergoes a unique sequence of differentiation processes that confers totipotency to the egg. The reconstitution of these events in vitro using pluripotent stem cells is a key achievement in reproductive biology and regenerative medicine. Here we report successful reconstitution in vitro of the entire process of oogenesis from mouse pluripotent stem cells. Fully potent mature oocytes were generated in culture from embryonic stem cells and from induced pluripotent stem cells derived from both embryonic fibroblasts and adult tail tip fibroblasts. Moreover, pluripotent stem cell lines were re-derived from the eggs that were generated in vitro, thereby reconstituting the full female germline cycle in a dish. This culture system will provide a platform for elucidating the molecular mechanisms underlying totipotency and the production of oocytes of other mammalian species in culture.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Complete in vitro generation of fertile oocytes from mouse primordial germ cells

Kanako Morohaku; Ren Tanimoto; Keisuke Sasaki; Ryouka Kawahara-Miki; Tomohiro Kono; Katsuhiko Hayashi; Yuji Hirao; Yayoi Obata

Significance Throughout the life of female mammals, only a small number of viable oocytes are produced. The mechanisms underlying the creation and selection of competent oocytes remain unclear. Here, we propose a novel approach for elucidating these unsolved questions, involving the use of an in vitro system established in the present study, which can fully reproduce mammalian oogenesis from mouse fetal primordial germ cells. Reconstitution of the entire oogenesis process has not been previously accomplished. Our system will assist in understanding the mechanisms of oogenesis and also create a new gamete resource in mammals. Reconstituting gametogenesis in vitro is a key goal for reproductive biology and regenerative medicine. Successful in vitro reconstitution of primordial germ cells and spermatogenesis has recently had a significant effect in the field. However, recapitulation of oogenesis in vitro remains unachieved. Here we demonstrate the first reconstitution, to our knowledge, of the entire process of mammalian oogenesis in vitro from primordial germ cells, using an estrogen-receptor antagonist that promotes normal follicle formation, which in turn is crucial for supporting oocyte growth. The fundamental events in oogenesis (i.e., meiosis, oocyte growth, and genomic imprinting) were reproduced in the culture system. The most rigorous evidence of the recapitulation of oogenesis was the birth of fertile offspring, with a maximum of seven pups obtained from a cultured gonad. Moreover, cryopreserved gonads yielded functional oocytes and offspring in this culture system. Thus, our in vitro system will enable both innovative approaches for a deeper understanding of oogenesis and a new avenue to create and preserve female germ cells.


Human Molecular Genetics | 2014

Forced expression of DNA methyltransferases during oocyte growth accelerates the establishment of methylation imprints but not functional genomic imprinting

Satoshi Hara; Takashi Takano; Tsugunari Fujikawa; Munehiro Yamada; Takuya Wakai; Tomohiro Kono; Yayoi Obata

In mammals, genomic imprinting governed by DNA methyltransferase DNMT3A and its cofactor DNMT3L is essential for functional gametes. Oocyte-specific methylation imprints are established during oocyte growth concomitant with DNMT3A/DNMT3L expression, although the mechanisms of oocyte-specific imprinting are not fully understood. To determine whether the presence of DNMT3A/DNMT3L in oocytes is sufficient for acquisition of methylation imprints, we produced transgenic mice to induce DNMT3A/DNMT3L expression prematurely in oogenesis and analyzed DNA methylation imprints. The results showed that 2- to 4-fold greater expression of DNMT3A/DNMT3L was achieved in non-growing (ng) oocytes versus fully grown oocytes derived from wild-type mice, but the analyzed imprint domains were not methylated. Thus, the presence of DNMT3A/DNMT3L in ng oocytes is insufficient for methylation imprints, and imprinted regions are resistant to DNMT3A/DNMT3L in ng oocytes. In contrast, excess DNMT3A/DNMT3L accelerated imprint acquisition at Igf2r, Lit1, Zac1 and Impact but not Snrpn and Mest in growing oocytes. Therefore, DNMT3A/DNMT3L quantity is an important factor for imprint acquisition. Transcription at imprinted domains is proposed to be involved in de novo methylation; however, transcription at Lit1, Snrpn and Impact was observed in ng oocytes. Thus, transcription cannot induce DNMT3A catalysis at imprinted regions even if DNMT3A/DNMT3L is present. However, the accelerated methylation imprints in oocytes, with the exception of Igf2r, were erased during embryogenesis. In conclusion, a sufficient amount of DNMT3A/DNMT3L and a shift from the resistant to permissive state are essential to establish oocyte-specific methylation imprints and that maintenance of the acquired DNA methylation imprints is essential for functional imprinting.


Journal of Reproduction and Development | 2016

Developmental competence of oocytes grown in vitro: Has it peaked already?

Kanako Morohaku; Yuji Hirao; Yayoi Obata

In vitro growth of immature oocytes provides opportunities to increase gametic resources and to understand the mechanisms underlying oocyte development. Many studies on the in vitro growth of oocytes have been reported thus far; however, only a few cases have been reported, which demonstrated that oocytes can support full-term development after in vitro fertilization. Our research group recently found that culture of mouse neonatal primordial follicles increased the birthrate; however, the establishment of an in vitro system that can completely mimic follicle or oocyte growth in vivo and control oogenesis remains an ongoing challenge.


Nature Protocols | 2017

Reconstitution of mouse oogenesis in a dish from pluripotent stem cells

Katsuhiko Hayashi; Orie Hikabe; Yayoi Obata; Yuji Hirao

This protocol is an extension to: Nat. Protoc. 8, 1513–1524 (2013); doi: 10.1038/nprot.2013.090; published online 11 July 2013Generation of functional oocytes in culture from pluripotent stem cells should provide a useful model system for improving our understanding of the basic mechanisms underlying oogenesis. In addition, it has potential applications as an alternative source of oocytes for reproduction. Using the most advanced mouse model in regard to reproductive engineering and stem cell biology, we previously developed a culture method that produces functional primorial germ cells starting from pluripotent cells in culture and described it in a previous protocol. This Protocol Extension describes an adaptation of this existing Protocol in which oogenesis also occurs in vitro, thus substantially modifying the technique. Oocytes generated from embryonic stem cells (ESCs) or induced pluripotent stem cells give rise to healthy pups. Here, we describe the protocol for oocyte generation in culture. The protocol is mainly composed of three different culture stages: in vitro differentiation (IVDi), in vitro growth (IVG), and in vitro maturation (IVM), which in total take ∼5 weeks. In each culture period, there are several checkpoints that enable the number of oocytes being produced in the culture to be monitored. The basic structure of the culture system should provide a useful tool for clarifying the complicated sequence of oogenesis in mammals.


PLOS ONE | 2012

The Presence of the Y-Chromosome, Not the Absence of the Second X-Chromosome, Alters the mRNA Levels Stored in the Fully Grown XY Mouse Oocyte

Baozeng Xu; Yayoi Obata; Feng Cao; Teruko Taketo

The oocytes of B6.YTIR sex-reversed female mouse mature in culture but fail to develop after fertilization because of their cytoplasmic defects. To identify the defective components, we compared the gene expression profiles between the fully-grown oocytes of B6.YTIR (XY) females and those of their XX littermates by cDNA microarray. 173 genes were found to be higher and 485 genes were lower in XY oocytes than in XX oocytes by at least 2-fold. We compared the transcript levels of selected genes by RT-PCR in XY and XX oocytes, as well as in XO oocytes missing paternal X-chromosomes. All genes tested showed comparable transcript levels between XX and XO oocytes, indicating that mRNA accumulation is well adjusted in XO oocytes. By contrast, in addition to Y-encoded genes, many genes showed significantly different transcript levels in XY oocytes. We speculate that the presence of the Y-chromosome, rather than the absence of the second X-chromosome, caused dramatic changes in the gene expression profile in the XY fully-grown oocyte.


Annals of Biomedical Engineering | 2017

Differentiation of Mouse Primordial Germ Cells into Functional Oocytes In Vitro

Kanako Morohaku; Yuji Hirao; Yayoi Obata

Various complex molecular events in oogenesis cannot be observed in vivo. As a bioengineering technique for female reproductive tissues, in vitro culture systems for female germ cells have been used to analyze oogenesis and preserve germ cells for over 20xa0years. Recently, we have established a new methodological approach for the culture of primordial germ cells (PGCs) and successfully obtained offspring. Our PGC culture system will be useful to clarify unresolved mechanisms of fertility and sterility from the beginning of mammalian oogenesis, before meiosis. This review summarizes the history of culture methods for mammalian germ cells, our current in vitro system, and future prospects for the culture of germ cells.


Reproduction | 2014

Long exposure to mature ooplasm can alter DNA methylation at imprinted loci in non-growing oocytes but not in prospermatogonia

Yayoi Obata; Takuya Wakai; Satoshi Hara; Tomohiro Kono

DNA methylation imprints that are established in spermatogenesis and oogenesis are essential for functional gametes. However, the mechanisms underlying gamete-specific imprinting remain unclear. In this study, we investigated whether male and female gametes derived from newborn mice are epigenetically plastic and whether DNA methylation imprints are influenced by the niche surrounding the nuclei of the gametes. When prospermatogonia possessing sperm-specific DNA methylation imprints were fused with enucleated fully grown oocytes and exposed to the ooplasm for 5–6 days, the DNA methylation status of the reconstituted oocytes remained identical to that of prospermatogonia for all the imprinted regions analysed. These results suggest that the imprinting status of prospermatogonia is stable and that the epigenome of prospermatogonia loses sexual plasticity. By contrast, when non-growing oocytes lacking oocyte-specific DNA methylation imprints were fused with enucleated fully grown oocytes and the reconstituted oocytes were then cultured for 5–6 days, the Igf2r, Kcnq1ot1 and, unexpectedly, H19/Igf2 differentially methylated regions (DMRs) were methylated. Methylation imprints were entirely absent in oocytes derived from 5-day-old mice, and H19/Igf2 DMR is usually methylated only in spermatogenesis. These findings indicate that in the nuclei of non-growing oocytes the chromatin conformation changes and becomes permissive to DNA methyltransferases in some DMRs and that mechanisms for maintaining non-methylated status at the H19/Igf2 DMR are lost upon long exposure to mature ooplasm.


Nature Protocols | 2017

Development of fertile mouse oocytes from mitotic germ cells in vitro

Kanako Morohaku; Yuji Hirao; Yayoi Obata

Mammalian fetal ovaries contain numerous primordial germ cells (PGCs), although few mature oocytes are obtained from females, owing to apoptosis and follicle atresia. The regulatory mechanisms underlying oogenesis/folliculogenesis remain unknown. Development of methods for obtaining mature oocytes from PGCs in fetal ovaries in vitro could contribute to clarifying these mechanisms. The failure of follicle assembly has been found to be the most challenging aspect in conventional culture conditions. Recently, we established novel culture conditions that enable successful follicle assembly, sustaining interactions between the oocyte and somatic cells, and, in turn, promoting oocyte growth and maturation. Mature oocytes were differentiated from PGCs after a 1-month culture period. A hundred mouse offspring were obtained from approximately a thousand mature oocytes, indicating that oocytes that were differentiated from PGCs in vitro acquired totipotency after fertilization. Here we provide a detailed protocol for using this in vitro system. This in vitro system will potentially provide a novel platform for studying oogenesis and preservation of female germ cells.


Journal of Reproduction and Development | 2014

Establishment of a Conditional Transgenic System Using the 2A Peptide in the Female Mouse Germline

Satoshi Hara; Takashi Takano; Mio Ogata; Reina Yamakami; Yusuke Sato; Tomohiro Kono; Yayoi Obata

Transgenic mice are essential research tools in developmental biology studies. The 2A peptide allows multiple genes to be expressed simultaneously at comparable levels in somatic cells, but there are no reports of it being used successfully in germ cells. We constructed a Cre/loxP-based conditional vector containing the 2A peptide to significantly enhance the expression of a reporter and target gene from a constitutive promoter in oocytes. Mice with a transgene insertion containing the chicken β-actin promoter, floxed EGFP-polyA cassette, mCherry reporter, 2A peptide and target gene DNA methyltransferase 3A2 (Dnmt3a2) were crossed with TNAP- or Vasa-Cre mice to produce offspring, in which mCherry and DNMT3A2 proteins were highly expressed in oocytes upon Cre-mediated removal of EGFP-polyA. This novel transgenic mouse line based on the 2A expression system can serve as a useful tool for examining gene function during oogenesis.

Collaboration


Dive into the Yayoi Obata's collaboration.

Top Co-Authors

Avatar

Tomohiro Kono

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Yuji Hirao

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Hara

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Takano

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Fukuda

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Feng Cao

Tokyo University of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge