Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoki Fukai is active.

Publication


Featured researches published by Tomoki Fukai.


Nature | 2009

Bidirectional plasticity in fast-spiking GABA circuits by visual experience.

Yoko Yazaki-Sugiyama; Siu Kang; Hideyuki Câteau; Tomoki Fukai; Takao K. Hensch

Experience-dependent plasticity in the brain requires balanced excitation–inhibition. How individual circuit elements contribute to plasticity outcome in complex neocortical networks remains unknown. Here we report an intracellular analysis of ocular dominance plasticity—the loss of acuity and cortical responsiveness for an eye deprived of vision in early life. Unlike the typical progressive loss of pyramidal-cell bias, direct recording from fast-spiking cells in vivo reveals a counterintuitive initial shift towards the occluded eye followed by a late preference for the open eye, consistent with a spike-timing-dependent plasticity rule for these inhibitory neurons. Intracellular pharmacology confirms a dynamic switch of GABA (γ-aminobutyric acid) impact to pyramidal cells following deprivation in juvenile mice only. Together these results suggest that the bidirectional recruitment of an initially binocular GABA circuit may contribute to experience-dependent plasticity in the developing visual cortex.


Neural Computation | 1997

A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all

Tomoki Fukai; Shigeru Tanaka

A neuroecological equation of the Lotka-Volterra type for mean firing rate is derived from the conventional membrane dynamics of a neural network with lateral inhibition and self-inhibition. Neural selection mechanisms employed by the competitive neural network receiving external input sare studied with analytic and numerical calculations. A remarkable finding is that the strength of lateral inhibition relative to that of self-inhibition is crucial for determining the steady states of the network among three qualitatively different types of behavior. Equal strength of both types of inhibitory connections leads the network to the well-known winner-take-all behavior. If, however, the lateral inhibition is weaker than the self-inhibition, a certain number of neurons are activated in the steady states or the number of winners is in general more than one (the winners-share-all behavior). On the other hand, if the self-inhibition is weaker than the lateral one, only one neuron is activated, but the winner is not necessarily the neuron receiving the largest input. It is suggested that our simple network model provides a mathematical basis for understanding neural selection mechanisms.


Nature Neuroscience | 2009

Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements

Yoshikazu Isomura; Rie Harukuni; Takashi Takekawa; Hidenori Aizawa; Tomoki Fukai

Motor cortex neurons are activated at different times during self-initiated voluntary movement. However, the manner in which excitatory and inhibitory neurons in distinct cortical layers help to organize voluntary movement is poorly understood. We carried out juxtacellular and multiunit recordings from actively behaving rats and found temporally and functionally distinct activations of excitatory pyramidal cells and inhibitory fast-spiking interneurons. Across cortical layers, pyramidal cells were activated diversely for sequential motor phases (for example, preparation, initiation and execution). In contrast, fast-spiking interneurons, including parvalbumin-positive basket cells, were recruited predominantly for motor execution, with pyramidal cells producing a command-like activity. Thus, fast-spiking interneurons may underlie command shaping by balanced inhibition or recurrent inhibition, rather than command gating by temporally alternating excitation and inhibition. Furthermore, initiation-associated pyramidal cells excited similar and different functional classes of neurons through putative monosynaptic connections. This suggests that these cells may temporally integrate information to initiate and coordinate voluntary movement.


The Journal of Comparative Neurology | 2012

Molecular Characterization of the Subnuclei in Rat Habenula

Hidenori Aizawa; Megumi Kobayashi; Sayaka Tanaka; Tomoki Fukai; Hitoshi Okamoto

The mammalian habenula is involved in regulating the activities of serotonergic and dopaminergic neurons. It consists of the medial and lateral habenulae, with each subregion having distinct neural connectivity. Despite the functional significance, manipulating neural activity in a subset of habenular pathways remains difficult because of the poor availability of molecular markers that delineate the subnuclear structures. Thus, we examined the molecular nature of neurons in the habenular subnuclei by analyzing the gene expressions of neurotransmitter markers. The results showed that different subregions of the medial habenula (MHb) use different combinations of neurotransmitter systems and could be categorized as either exclusively glutamatergic (superior part of MHb), both substance P‐ergic and glutamatergic (dorsal region of central part of MHb), or both cholinergic and glutamatergic (inferior part, ventral region of central part, and lateral part of MHb). The superior part of the MHb strongly expressed interleukin‐18 and was innervated by noradrenergic fibers. In contrast, the inferior part, ventral region of the central part, and lateral part of the MHb were peculiar in that acetylcholine and glutamate were cotransmitted from the axonal terminals. In contrast, neurons in the lateral habenula (LHb) were almost uniformly glutamatergic. Finally, the expressions of Htr2c and Drd2 seemed complementary in the medial LHb division, whereas they coincided in the lateral division, suggesting that the medial and lateral divisions of LHb show strong heterogeneity with respect to monoamine receptor expression. These analyses clarify molecular differences between subnuclei in the mammalian habenula that support their respective functional implications. J. Comp. Neurol. 520:4051–4066, 2012.


The Journal of Neuroscience | 2013

Reward-Modulated Motor Information in Identified Striatum Neurons

Yoshikazu Isomura; Takashi Takekawa; Rie Harukuni; Takashi Handa; Hidenori Aizawa; Masahiko Takada; Tomoki Fukai

It is widely accepted that dorsal striatum neurons participate in either the direct pathway (expressing dopamine D1 receptors) or the indirect pathway (expressing D2 receptors), controlling voluntary movements in an antagonistically balancing manner. The D1- and D2-expressing neurons are activated and inactivated, respectively, by dopamine released from substantia nigra neurons encoding reward expectation. However, little is known about the functional representation of motor information and its reward modulation in individual striatal neurons constituting the two pathways. In this study, we juxtacellularly recorded the spike activity of single neurons in the dorsolateral striatum of rats performing voluntary forelimb movement in a reward-predictable condition. Some of these neurons were identified morphologically by a combination of juxtacellular visualization and in situ hybridization for D1 mRNA. We found that the striatal neurons exhibited distinct functional activations before and during the forelimb movement, regardless of the expression of D1 mRNA. They were often positively, but rarely negatively, modulated by expecting a reward for the correct motor response. The positive reward modulation was independent of behavioral differences in motor performance. In contrast, regular-spiking and fast-spiking neurons in any layers of the motor cortex displayed only minor and unbiased reward modulation of their functional activation in relation to the execution of forelimb movement. Our results suggest that the direct and indirect pathway neurons cooperatively rather than antagonistically contribute to spatiotemporal control of voluntary movements, and that motor information is subcortically integrated with reward information through dopaminergic and other signals in the skeletomotor loop of the basal ganglia.


international conference on neural information processing | 2002

Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses

Masaki Nomura; Tomoki Fukai; Toshio Aoyagi

Fast-spiking (FS) interneurons have specific types (Kv3.1/3.2 type) of the delayed potassium channel, which differ from the conventional Hodgkin-Huxley (HH) type potassium channel (Kv1.3 type) in several aspects. In this study, we show dramatic effects of the Kv3.1/3.2 potassium channel on the synchronization of the FS interneurons. We show analytically that two identical electrically coupled FS interneurons modeled with Kv3.1/3.2 channel fire synchronously at arbitrary firing frequencies, unlike similarly coupled FS neurons modeled with Kv1.3 channel that show frequency-dependent synchronous and antisynchronous firing states. Introducing GABA A receptor-mediated synaptic connections into an FS neuron pair tends to induce an antisynchronous firing state, even if the chemical synapses are bidirectional. Accordingly, an FS neuron pair connected simultaneously by electrical and chemical synapses achieves both synchronous firing state and antisynchronous firing state in a physiologically plausible range of the conductance ratio between electrical and chemical synapses. Moreover, we find that a large-scale network of FS interneurons connected by gap junctions and bidirectional GABAergic synapses shows similar bistability in the range of gamma frequencies (3070 Hz).


Scientific Reports | 2012

Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links

Jun-nosuke Teramae; Yasuhiro Tsubo; Tomoki Fukai

The connectivity of complex networks and functional implications has been attracting much interest in many physical, biological and social systems. However, the significance of the weight distributions of network links remains largely unknown except for uniformly- or Gaussian-weighted links. Here, we show analytically and numerically, that recurrent neural networks can robustly generate internal noise optimal for spike transmission between neurons with the help of a long-tailed distribution in the weights of recurrent connections. The structure of spontaneous activity in such networks involves weak-dense connections that redistribute excitatory activity over the network as noise sources to optimally enhance the responses of individual neurons to input at sparse-strong connections, thus opening multiple signal transmission pathways. Electrophysiological experiments confirm the importance of a highly broad connectivity spectrum supported by the model. Our results identify a simple network mechanism for internal noise generation by highly inhomogeneous connection strengths supporting both stability and optimal communication.


European Journal of Neuroscience | 2007

Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex.

Yasuhiro Tsubo; Masahiko Takada; Alex D. Reyes; Tomoki Fukai

It is postulated that synchronous firing of cortical neurons plays an active role in cognitive functions of the brain. An important issue is whether pyramidal neurons in different cortical layers exhibit similar tendencies to synchronise. To address this issue, we performed intracellular and whole‐cell recordings of regular‐spiking pyramidal neurons in slice preparations of the rat motor cortex (18–45 days old) and analysed the phase response curves of these pyramidal neurons in layers 2/3 and 5. The phase response curve represents how an external stimulus affects the timing of spikes immediately after the stimulus in repetitively firing neurons. The phase response curve can be classified into two categories, type 1 (the spike is always advanced) and type 2 (the spike is advanced or delayed depending on the stimulus phase), and are important determinants of whether or not rhythmic synchronization of neuron pairs occurs. We found that pyramidal neurons in layer 2/3 tend to display type‐2 phase response curves whereas those in layer 5 tend to exhibit type‐1 phase response curves. The differences were prominent particularly in the gamma‐frequency range (20–45 Hz). Our results imply that the layer‐2/3 pyramidal neurons, when coupled mutually through fast excitatory synapses, may exhibit a much stronger tendency for rhythmic synchronization than layer‐5 neurons in the gamma‐frequency range.


European Journal of Neuroscience | 2010

Accurate spike sorting for multi-unit recordings

Takashi Takekawa; Yoshikazu Isomura; Tomoki Fukai

Simultaneous recordings with multi‐channel electrodes are widely used for studying how multiple neurons are recruited for information processing. The recorded signals contain the spike events of a number of adjacent or distant neurons and must be sorted correctly into spike trains of individual neurons. Several mathematical methods have been proposed for spike sorting but the process is difficult in practice, as extracellularly recorded signals are corrupted by biological noise. Moreover, spike sorting is often time‐consuming, as it usually requires corrections by human operators. Methods are needed to obtain reliable spike clusters without heavy manual operation. Here, we introduce several methods of spike sorting and compare the accuracy and robustness of their performance by using publicized data of simultaneous extracellular and intracellular recordings of neuronal activity. The best and excellent performance was obtained when a newly proposed filter for spike detection was combined with the wavelet transform and variational Bayes for a finite mixture of Student’s t‐distributions, namely, robust variational Bayes. Wavelet transform extracts features that are characteristic of the detected spike waveforms and the robust variational Bayes categorizes the extracted features into clusters corresponding to spikes of the individual neurons. The use of Student’s t‐distributions makes this categorization robust against noisy data points. Some other new methods also exhibited reasonably good performance. We implemented all of the proposed methods in a C++ code named ‘EToS’ (Efficient Technology of Spike sorting), which is freely available on the Internet.


The Journal of Neuroscience | 2010

Prototypic Seizure Activity Driven by Mature Hippocampal Fast-Spiking Interneurons

Yoko Fujiwara-Tsukamoto; Yoshikazu Isomura; Michiko Imanishi; Taihei Ninomiya; Minoru Tsukada; Yuchio Yanagawa; Tomoki Fukai; Masahiko Takada

A variety of epileptic seizure models have shown that activation of glutamatergic pyramidal cells is usually required for rhythm generation and/or synchronization in hippocampal seizure-like oscillations in vitro. However, it still remains unclear whether GABAergic interneurons may be able to drive the seizure-like oscillations without glutamatergic transmission. Here, we found that electrical stimulation in rat hippocampal CA1 slices induced a putative prototype of seizure-like oscillations (“prototypic afterdischarge,” 1.8–3.8 Hz) in mature pyramidal cells and interneurons in the presence of ionotropic glutamate receptor antagonists. The prototypic afterdischarge was abolished by GABAA receptor antagonists or gap junction blockers, but not by a metabotropic glutamate receptor antagonist or a GABAB receptor antagonist. Gramicidin-perforated patch-clamp and voltage-clamp recordings revealed that pyramidal cells were depolarized and frequently excited directly through excitatory GABAergic transmissions in each cycle of the prototypic afterdischarge. Interneurons that were actively spiking during the prototypic afterdischarge were mostly fast-spiking (FS) interneurons located in the strata oriens and pyramidale. Morphologically, these interneurons that might be “potential seizure drivers” included basket, chandelier, and bistratified cells. Furthermore, they received direct excitatory GABAergic input during the prototypic afterdischarge. The O-LM cells and most of the interneurons in the strata radiatum and lacunosum moleculare were not essential for the generation of prototypic afterdischarge. The GABA-mediated prototypic afterdischarge was observed later than the third postnatal week in the rat hippocampus. Our results suggest that an FS interneuron network alone can drive the prototypic form of electrically induced seizure-like oscillations through their excitatory GABAergic transmissions and presumably through gap junction-mediated communications.

Collaboration


Dive into the Tomoki Fukai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Takekawa

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahiko Takada

Primate Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuhiro Tsubo

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Siu Kang

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Hideyuki Câteau

RIKEN Brain Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge