Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshikazu Isomura is active.

Publication


Featured researches published by Yoshikazu Isomura.


Neuron | 2008

Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm

Anton Sirota; Sean M. Montgomery; Shigeyoshi Fujisawa; Yoshikazu Isomura; Michaël B. Zugaro; György Buzsáki

Although it has been tacitly assumed that the hippocampus exerts an influence on neocortical networks, the mechanisms of this process are not well understood. We examined whether and how hippocampal theta oscillations affect neocortical assembly patterns by recording populations of single cells and transient gamma oscillations in multiple cortical regions, including the somatosensory area and prefrontal cortex in behaving rats and mice. Laminar analysis of neocortical gamma bursts revealed multiple gamma oscillators of varying frequency and location, which were spatially confined and synchronized local groups of neurons. A significant fraction of putative pyramidal cells and interneurons as well as localized gamma oscillations in all recorded neocortical areas were phase biased by the hippocampal theta rhythm. We hypothesize that temporal coordination of neocortical gamma oscillators by hippocampal theta is a mechanism by which information contained in spatially widespread neocortical assemblies can be synchronously transferred to the associative networks of the hippocampus.


Nature Neuroscience | 2009

Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements

Yoshikazu Isomura; Rie Harukuni; Takashi Takekawa; Hidenori Aizawa; Tomoki Fukai

Motor cortex neurons are activated at different times during self-initiated voluntary movement. However, the manner in which excitatory and inhibitory neurons in distinct cortical layers help to organize voluntary movement is poorly understood. We carried out juxtacellular and multiunit recordings from actively behaving rats and found temporally and functionally distinct activations of excitatory pyramidal cells and inhibitory fast-spiking interneurons. Across cortical layers, pyramidal cells were activated diversely for sequential motor phases (for example, preparation, initiation and execution). In contrast, fast-spiking interneurons, including parvalbumin-positive basket cells, were recruited predominantly for motor execution, with pyramidal cells producing a command-like activity. Thus, fast-spiking interneurons may underlie command shaping by balanced inhibition or recurrent inhibition, rather than command gating by temporally alternating excitation and inhibition. Furthermore, initiation-associated pyramidal cells excited similar and different functional classes of neurons through putative monosynaptic connections. This suggests that these cells may temporally integrate information to initiate and coordinate voluntary movement.


Neuroscience | 2003

Excitatory gaba input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells

Yoko Fujiwara-Tsukamoto; Yoshikazu Isomura; Atsushi Nambu; Masahiko Takada

GABA, which generally mediates inhibitory synaptic transmissions, occasionally acts as an excitatory transmitter through intense GABA(A) receptor activation even in adult animals. The excitatory effect results from alterations in the gradients of chloride, bicarbonate, and potassium ions, but its functional role still remains a mystery. Here we show that such GABAergic excitation participates in the expression of seizure-like rhythmic synchronization (afterdischarge) in the mature hippocampal CA1 region. Seizure-like afterdischarge was induced by high-frequency synaptic stimulation in the rat hippocampal CA1-isolated slice preparations. The hippocampal afterdischarge was completely blocked by selective antagonists of ionotropic glutamate receptors or of GABA(A) receptor, and also by gap-junction inhibitors. In the CA1 pyramidal cells, oscillatory depolarizing responses during the afterdischarge were largely dependent on chloride conductance, and their reversal potentials (average -38 mV) were very close to those of exogenously applied GABAergic responses. Moreover, intracellular loading of the GABA(A) receptor blocker fluoride abolished the oscillatory responses in the pyramidal cells. Finally, the GABAergic excitation-driven afterdischarge has not been inducible until the second postnatal week. Thus, excitatory GABAergic transmission seems to play an active functional role in the generation of adult hippocampal afterdischarge, in cooperation with glutamatergic transmissions and possible gap junctional communications. Our findings may elucidate the cellular mechanism of neuronal synchronization during seizure activity in temporal lobe epilepsy.


The Journal of Neuroscience | 2013

Reward-Modulated Motor Information in Identified Striatum Neurons

Yoshikazu Isomura; Takashi Takekawa; Rie Harukuni; Takashi Handa; Hidenori Aizawa; Masahiko Takada; Tomoki Fukai

It is widely accepted that dorsal striatum neurons participate in either the direct pathway (expressing dopamine D1 receptors) or the indirect pathway (expressing D2 receptors), controlling voluntary movements in an antagonistically balancing manner. The D1- and D2-expressing neurons are activated and inactivated, respectively, by dopamine released from substantia nigra neurons encoding reward expectation. However, little is known about the functional representation of motor information and its reward modulation in individual striatal neurons constituting the two pathways. In this study, we juxtacellularly recorded the spike activity of single neurons in the dorsolateral striatum of rats performing voluntary forelimb movement in a reward-predictable condition. Some of these neurons were identified morphologically by a combination of juxtacellular visualization and in situ hybridization for D1 mRNA. We found that the striatal neurons exhibited distinct functional activations before and during the forelimb movement, regardless of the expression of D1 mRNA. They were often positively, but rarely negatively, modulated by expecting a reward for the correct motor response. The positive reward modulation was independent of behavioral differences in motor performance. In contrast, regular-spiking and fast-spiking neurons in any layers of the motor cortex displayed only minor and unbiased reward modulation of their functional activation in relation to the execution of forelimb movement. Our results suggest that the direct and indirect pathway neurons cooperatively rather than antagonistically contribute to spatiotemporal control of voluntary movements, and that motor information is subcortically integrated with reward information through dopaminergic and other signals in the skeletomotor loop of the basal ganglia.


European Journal of Neuroscience | 2010

Accurate spike sorting for multi-unit recordings

Takashi Takekawa; Yoshikazu Isomura; Tomoki Fukai

Simultaneous recordings with multi‐channel electrodes are widely used for studying how multiple neurons are recruited for information processing. The recorded signals contain the spike events of a number of adjacent or distant neurons and must be sorted correctly into spike trains of individual neurons. Several mathematical methods have been proposed for spike sorting but the process is difficult in practice, as extracellularly recorded signals are corrupted by biological noise. Moreover, spike sorting is often time‐consuming, as it usually requires corrections by human operators. Methods are needed to obtain reliable spike clusters without heavy manual operation. Here, we introduce several methods of spike sorting and compare the accuracy and robustness of their performance by using publicized data of simultaneous extracellular and intracellular recordings of neuronal activity. The best and excellent performance was obtained when a newly proposed filter for spike detection was combined with the wavelet transform and variational Bayes for a finite mixture of Student’s t‐distributions, namely, robust variational Bayes. Wavelet transform extracts features that are characteristic of the detected spike waveforms and the robust variational Bayes categorizes the extracted features into clusters corresponding to spikes of the individual neurons. The use of Student’s t‐distributions makes this categorization robust against noisy data points. Some other new methods also exhibited reasonably good performance. We implemented all of the proposed methods in a C++ code named ‘EToS’ (Efficient Technology of Spike sorting), which is freely available on the Internet.


The Journal of Neuroscience | 2010

Prototypic Seizure Activity Driven by Mature Hippocampal Fast-Spiking Interneurons

Yoko Fujiwara-Tsukamoto; Yoshikazu Isomura; Michiko Imanishi; Taihei Ninomiya; Minoru Tsukada; Yuchio Yanagawa; Tomoki Fukai; Masahiko Takada

A variety of epileptic seizure models have shown that activation of glutamatergic pyramidal cells is usually required for rhythm generation and/or synchronization in hippocampal seizure-like oscillations in vitro. However, it still remains unclear whether GABAergic interneurons may be able to drive the seizure-like oscillations without glutamatergic transmission. Here, we found that electrical stimulation in rat hippocampal CA1 slices induced a putative prototype of seizure-like oscillations (“prototypic afterdischarge,” 1.8–3.8 Hz) in mature pyramidal cells and interneurons in the presence of ionotropic glutamate receptor antagonists. The prototypic afterdischarge was abolished by GABAA receptor antagonists or gap junction blockers, but not by a metabotropic glutamate receptor antagonist or a GABAB receptor antagonist. Gramicidin-perforated patch-clamp and voltage-clamp recordings revealed that pyramidal cells were depolarized and frequently excited directly through excitatory GABAergic transmissions in each cycle of the prototypic afterdischarge. Interneurons that were actively spiking during the prototypic afterdischarge were mostly fast-spiking (FS) interneurons located in the strata oriens and pyramidale. Morphologically, these interneurons that might be “potential seizure drivers” included basket, chandelier, and bistratified cells. Furthermore, they received direct excitatory GABAergic input during the prototypic afterdischarge. The O-LM cells and most of the interneurons in the strata radiatum and lacunosum moleculare were not essential for the generation of prototypic afterdischarge. The GABA-mediated prototypic afterdischarge was observed later than the third postnatal week in the rat hippocampus. Our results suggest that an FS interneuron network alone can drive the prototypic form of electrically induced seizure-like oscillations through their excitatory GABAergic transmissions and presumably through gap junction-mediated communications.


Nature Neuroscience | 2014

Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task

Yoshito Masamizu; Yasuhiro Tanaka; Yasuyo Tanaka; Riichiro Hira; Fuki Ohkubo; Kazuo Kitamura; Yoshikazu Isomura; Takashi Okada; Masanori Matsuzaki

The primary motor cortex (M1) possesses two intermediate layers upstream of the motor-output layer: layer 2/3 (L2/3) and layer 5a (L5a). Although repetitive training often improves motor performance and movement coding by M1 neuronal ensembles, it is unclear how neuronal activities in L2/3 and L5a are reorganized during motor task learning. We conducted two-photon calcium imaging in mouse M1 during 14 training sessions of a self-initiated lever-pull task. In L2/3, the accuracy of neuronal ensemble prediction of lever trajectory remained unchanged globally, with a subset of individual neurons retaining high prediction accuracy throughout the training period. However, in L5a, the ensemble prediction accuracy steadily improved, and one-third of neurons, including subcortical projection neurons, evolved to contribute substantially to ensemble prediction in the late stage of learning. The L2/3 network may represent coordination of signals from other areas throughout learning, whereas L5a may participate in the evolving network representing well-learned movements.


The Journal of Physiology | 2004

Synaptic interactions between pyramidal cells and interneurone subtypes during seizure-like activity in the rat hippocampus

Yoko Fujiwara-Tsukamoto; Yoshikazu Isomura; Katsuyuki Kaneda; Masahiko Takada

We have recently reported that excitatory GABAergic and glutamatergic mechanisms may be involved in the generation of seizure‐like (ictal) rhythmic synchronization (afterdischarge), induced by a strong synaptic stimulation of the CA1 pyramidal cells in the mature rat hippocampus in vitro. To clarify the network mechanism of this neuronal synchronization, dual whole‐cell patch‐clamp recordings of the afterdischarge responses were performed simultaneously from a variety of interneurones and their neighbouring pyramidal cells in hippocampal CA1‐isolated slice preparations. According to morphological and electrophysiological criteria, the recorded interneurones were then classified into distinct subtypes. The non‐fast‐spiking interneurones located in the strata lacunosum‐moleculare and radiatum hardly discharged during the afterdischarge, whereas most of the fast‐spiking and non‐fast‐spiking interneurones in the strata oriens and pyramidale, including the basket, chandelier and bistratified cells, exhibited prominent firings that were precisely synchronous with oscillatory responses in the pyramidal cells. Field potential recordings showed that excitatory synaptic transmissions might take place primarily in the strata oriens and pyramidale during the afterdischarge. Restricted lesions in the strata oriens and pyramidale, but not in the other layers, resulted in the complete desynchronization of afterdischarge activity, and also, local application of glutamate receptor antagonists to these layers blocked the expression of afterdischarge. The present findings indicate that the neuronal synchronization of epileptic afterdischarge may be accomplished in a ‘positive feedback circuit’ formed by the excitatory GABAergic interneurones and the glutamatergic pyramidal cells within the strata oriens and/or pyramidale of the hippocampal CA1 region.


The Journal of Neuroscience | 2014

Glial Dysfunction in the Mouse Habenula Causes Depressive-Like Behaviors and Sleep Disturbance

Wanpeng Cui; Hiroaki Mizukami; Michiko Yanagisawa; Tomomi Aida; Masatoshi Nomura; Yoshikazu Isomura; Ryoichi Takayanagi; Keiya Ozawa; Kohichi Tanaka; Hidenori Aizawa

The lateral habenula (LHb) regulates the activity of monoaminergic neurons in the brainstem. This area has recently attracted a surge of interest in psychiatry because studies have reported the pathological activation of the habenula in patients with major depression and in animal models. The LHb plays a significant role in the pathophysiology of depression; however, how habenular neurons are activated to cause various depression symptoms, such as reduced motivation and sleep disturbance, remain unclear. We hypothesized that dysfunctional astrocytes may cause LHb hyperactivity due to the defective uptake activity of extracellular glutamate, which induces depressive-like behaviors. We examined the activity of neurons in habenular pathways and performed behavioral and sleep analyses in mice with pharmacological and genetic inhibition of the activity of the glial glutamate transporter GLT-1 in the LHb. The habenula-specific inhibition of GLT-1 increased the neuronal firing rate and the level of c-Fos expression in the LHb. Mice with reduced GLT-1 activity in the habenula exhibited a depressive-like phenotype in the tail suspension and novelty-suppressed feeding tests. These animals also displayed increased susceptibility to chronic stress, displaying more frequent avoidant behavior without affecting locomotor activity in the open-field test. Intriguingly, the mice showed disinhibition of rapid eye movement sleep, which is a characteristic sleep pattern in patients with depression. These results provide evidence that disrupting glutamate clearance in habenular astrocytes increases neuronal excitability and depressive-like phenotypes in behaviors and sleep.


Journal of Neurophysiology | 2010

Theta Oscillations in Primate Prefrontal and Anterior Cingulate Cortices in Forewarned Reaction Time Tasks

Toru Tsujimoto; Hideki Shimazu; Yoshikazu Isomura; Kazuo Sasaki

Previously, we introduced a monkey model for human frontal midline theta oscillations as a possible neural correlate of attention. It was based on homologous theta oscillations found in the monkeys prefrontal and anterior cingulate cortices (areas 9 and 32) in a self-initiated hand-movement task. However, it has not been confirmed whether theta activity in the monkey model consistently appears in other situations demanding attention. Here, we examined the detailed properties of theta oscillations in four variations of forewarned reaction time tasks with warning (S1) and imperative (S2) stimuli. We characterized the theta oscillations generated exclusively in areas 9 and 32, as follows: 1) in the S1-S2 interval where movement preparation and reward expectation were presumably involved, the theta power was higher than in the pre-S1 period; 2) in the no-go trials of go/no-go tasks instructed by S1, the theta power in the S1-S2 interval was lower than in the pre-S1 period in an asymmetrical reward condition, whereas it was moderately higher in a symmetrical condition; 3) the theta power after reward delivery was higher than in the unrewarded trials; 4) the theta power in the pre-S1 period was higher than in the resting condition; and 5) when the monkey had to guess the S1-S2 duration internally without seeing S2, the theta power in the pre-S1 period was higher than in the original S1-S2 experiment. These findings suggest that attentional loads associated with different causes can induce the same theta activity, thereby supporting the consistency of attention-dependent theta oscillations in our model.

Collaboration


Dive into the Yoshikazu Isomura's collaboration.

Top Co-Authors

Avatar

Tomoki Fukai

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Masahiko Takada

Primate Research Institute

View shared research outputs
Top Co-Authors

Avatar

Takashi Takekawa

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rie Harukuni

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge