Tomoko Emura
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomoko Emura.
Angewandte Chemie | 2014
Deepak Koirala; Prakash Shrestha; Tomoko Emura; Kumi Hidaka; Shankar Mandal; Masayuki Endo; Hiroshi Sugiyama; Hanbin Mao
While single-molecule sensing offers the ultimate detection limit, its throughput is often restricted as sensing events are carried out one at a time in most cases. 2D and 3D DNA origami nanostructures are used as expanded single-molecule platforms in a new mechanochemical sensing strategy. As a proof of concept, six sensing probes are incorporated in a 7-tile DNA origami nanoassembly, wherein binding of a target molecule to any of these probes leads to mechanochemical rearrangement of the origami nanostructure, which is monitored in real time by optical tweezers. Using these platforms, 10 pM platelet-derived growth factor (PDGF) are detected within 10 minutes, while demonstrating multiplex sensing of the PDGF and a target DNA in the same solution. By tapping into the rapid development of versatile DNA origami nanostructures, this mechanochemical platform is anticipated to offer a long sought solution for single-molecule sensing with improved throughput.
Chemistry: A European Journal | 2014
Tomohiro Takenaka; Masayuki Endo; Yangyang Yang; Tomoko Emura; Kumi Hidaka; Takayuki Kato; Tomoko Miyata; Keiichi Namba; Hiroshi Sugiyama
A photofunctionalized square bipyramidal DNA nanocapsule (NC) was designed and prepared for the creation of a nanomaterial carrier. Photocontrollable open/close system and toehold system were introduced into the NC for the inclusion and release of a gold nanoparticle (AuNP) by photoirradiation and strand displacement. The reversible open and closed states were examined by gel electrophoresis and atomic force microscopy (AFM), and the open behavior was directly observed by high-speed AFM. The encapsulation of the DNA-modified AuNP within the NC was carried out by hybridization of a specific DNA strand (capture strand), and the release of the AuNP was examined by addition of toehold-containing complementary DNA strand (release strand). The release of the AuNP from the NC was achieved by the opening of the NC and subsequent strand displacement.
Chemistry: A European Journal | 2014
Masayuki Endo; Yosuke Takeuchi; Tomoko Emura; Kumi Hidaka; Hiroshi Sugiyama
In nucleic acid nanotechnology, designed RNA molecules are widely explored because of their usability originating from RNAs structural and functional diversity. Herein, a method to design and prepare RNA nanostructures by employing DNA origami strategy was developed. A single-stranded RNA scaffold and staple RNA strands were used for the formation of RNA nanostructures. After the annealing of the mixtures, 7-helix bundled RNA tile and 6-helix bundled RNA tube structures were observed as predesigned shapes. These nanostructures were easily functionalized by introducing chemical modification to the RNA scaffolds. The DNA origami method is extended and utilized to construct RNA nanostructures.
ACS Nano | 2015
Masayuki Endo; Xiwen Xing; Xiang Zhou; Tomoko Emura; Kumi Hidaka; Bodin Tuesuwan; Hiroshi Sugiyama
We demonstrate the single-molecule operation and observation of the formation and resolution of double-stranded DNA (dsDNA) containing a G-quadruplex (GQ) forming and counterpart i-motif forming sequence in the DNA nanostructure. Sequential manipulation of DNA strands in the DNA frame was performed to prepare a topologically controlled GQ/i-motif dsDNA. Using strand displacement and the addition and removal of K(+), the topologically controlled GQ/i-motif dsDNA in the DNA frame was obtained in high yield. The dsDNA was resolved into the single-stranded DNA, GQ, and i-motif by the addition of K(+) and operation in acidic conditions. The dissociation of the dsDNA under the GQ and i-motif formation condition was monitored by high-speed atomic force microscopy. The results indicate that the dsDNA containing the GQ- and i-motif sequence is effectively dissolved when the duplex is helically loosened in the DNA nanoscaffold.
Journal of the American Chemical Society | 2012
Masayuki Endo; Ryoji Miyazaki; Tomoko Emura; Kumi Hidaka; Hiroshi Sugiyama
A transcription regulation system initiated by DNA nanostructure changes was designed and constructed. Using the toehold system, specific DNA strands induced the opening of the tubular structure. A transcription product from the purified tube-attached dsDNA template was observed by addition of DNA strands that were specific for opening the tubular structure.
Angewandte Chemie | 2015
Masayuki Endo; Yosuke Takeuchi; Tomoko Emura; Kumi Hidaka; Fuan Wang; Itamar Willner; Hiroshi Sugiyama
We demonstrate the single-molecule imaging of the catalytic reaction of a Zn(2+)-dependent DNAzyme in a DNA origami nanostructure. The single-molecule catalytic activity of the DNAzyme was examined in the designed nanostructure, a DNA frame. The DNAzyme and a substrate strand attached to two supported dsDNA molecules were assembled in the DNA frame in two different configurations. The reaction was monitored by observing the configurational changes of the incorporated DNA strands in the DNA frame. This configurational changes were clearly observed in accordance with the progress of the reaction. The separation processes of the dsDNA molecules, as induced by the cleavage by the DNAzyme, were directly visualized by high-speed atomic force microscopy (AFM). This nanostructure-based AFM imaging technique is suitable for the monitoring of various chemical and biochemical catalytic reactions at the single-molecule level.
Angewandte Chemie | 2014
Masayuki Endo; Seigi Yamamoto; Tomoko Emura; Kumi Hidaka; Nobuhiro Morone; John E. Heuser; Hiroshi Sugiyama
We developed a novel method to design various helical tubular structures using the DNA origami method. The size-controlled tubular structures which have 192, 256, and 320 base pairs for one turn of the tube were designed and prepared. We observed the formation of the expected short tubes and unexpected long ones. Detailed analyses of the surface patterns of the tubes showed that the short tubes had mainly a left-handed helical structure. The long tubes mainly formed a right-handed helical structure and extended to the directions of the double helical axes as structural isomers of the short tubes. The folding pathways of the tubes were estimated by analyzing the proportions of short and long tubes obtained at different annealing conditions. Depending on the number of base pairs involved in one turn of the tube, the population of left-/right-handed and short/long tubes changed. The bending stress caused by the stiffness of the bundled double helices and the non-natural helical pitch determine the structural variety of the tubes.
Nanomedicine: Nanotechnology, Biology and Medicine | 2016
Yu Nishida; Shozo Ohtsuki; Yuki Araie; Yuka Umeki; Masayuki Endo; Tomoko Emura; Kumi Hidaka; Hiroshi Sugiyama; Yuki Takahashi; Yoshinobu Takakura; Makiya Nishikawa
Immunoinhibitory oligodeoxynucleotides (INH-ODNs) are promising inhibitors of Toll-like receptor 9 (TLR9) activation. To efficiently deliver INH-ODNs to TLR9-positive cells, we designed a Takumi-shaped DNA (Takumi) consisting of two partially complementary ODNs as the main component of a DNA hydrogel. Polyacrylamide gel electrophoresis showed that Takumi-containing INH-ODNs (iTakumi) and iTakumi-based DNA hydrogel (iTakumiGel) were successfully generated. Their activity was examined in murine macrophage-like RAW264.7 cells and DC2.4 dendritic cells by measuring tumor necrosis factor-α and interleukin-6 release after the addition of a TLR9 ligand (CpG ODN). Cytokine release was efficiently inhibited by the iTakumiGel. Flow cytometry analysis and confocal microscopy showed that cellular uptake of INH-ODN was greatly increased by the iTakumiGel. These results indicate that a Takumi-based DNA hydrogel is useful for the delivery of INH-ODNs to immune cells to inhibit TLR9-mediated hyperinduction of proinflammatory cytokines. From the Clinical Editor: Toll-like receptor 9 activation has been reported to be associated with many autoimmune diseases. DNA inhibition using oligodeoxynucleotides is one of the potential treatments. In this article, the authors described hydrogel-based platform for the delivery of the inhibitory oligodeoxynucleotides for enhanced efficacy. The positive findings could indicate a way for the future.
Chemistry: A European Journal | 2017
Yangyang Yang; Ryu Tashiro; Tomoko Emura; Kumi Hidaka; Hiroshi Sugiyama; Masayuki Endo
Various DNA-based nanodevices have been developed on the nanometer scale using light as regulation input. However, the programmed controllability is still a major challenge for these artificial nanodevices. Herein, we demonstrate a rotary DNA nanostructure in which the rotations are controlled by light. A bar-shaped DNA rotor, fabricated as a stiff double-crossover molecule, was placed on the top of a rectangular DNA tile. The photoresponsive oligonucleotides modified with azobenzenes were employed as switching motifs to release/trap the rotor at specific angular position on DNA tile by switching photoirradiations between ultraviolet and visible light. As a result, two reconfigurable states (perpendicular and parallel) of rotor were obtained, in which the angular changes were characterized by AFM and fluorescence quenching assays. Moreover, the reversible rotary motions during the photoirradiation were directly visualized on the DNA tile surface in a nanometer-scale precision using a second-scale scanning of the high-speed AFM.
Angewandte Chemie | 2017
Elena M. Willner; Yuu Kamada; Tomoko Emura; Kumi Hidaka; Hendrik Dietz; Hiroshi Sugiyama; Masayuki Endo
We demonstrate direct observation of the dynamic opening and closing behavior of photocontrollable DNA origami nanoscissors using high-speed atomic force microscopy (HS-AFM). First the conformational change between the open and closed state controlled by adjustment of surrounding salt concentration could be directly observed during AFM scanning. Then light-responsive moieties were incorporated into the nanoscissors to control these structural changes by photoirradiation. Using photoswitchable DNA strands, we created a photoresponsive nanoscissors variant and were able to distinguish between the open and closed conformations after respective irradiation with ultraviolet (UV) and visible (Vis) light by gel electrophoresis and AFM imaging. Additionally, these reversible changes in shape during photoirradiation were directly visualized using HS-AFM. Moreover, four photoswitchable nanoscissors were assembled into a scissor-actuator-like higher-order object, the configuration of which could be controlled by the open and closed switching induced by irradiation with UV and Vis light.