Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoko Iwaki is active.

Publication


Featured researches published by Tomoko Iwaki.


Microbiology | 2008

Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe.

Tomoko Iwaki; Haruyuki Iefuji; Yoshikazu Hiraga; Akira Hosomi; Tomotake Morita; Yuko Giga-Hama; Kaoru Takegawa

Sterols are a major class of membrane lipids in eukaryotes. In Schizosaccharomyces pombe, sterol 24-C-methyltransferase (Erg6p), C-8 sterol isomerase (Erg2p), C-5 sterol desaturase (Erg31p, Erg32p), C-22 sterol desaturase (Erg5p) and C-24 (28) sterol reductase (Sts1p/Erg4p) have been predicted, but not yet determined, to catalyse a sequence of reactions from zymosterol to ergosterol. Disruption mutants of these genes were unable to synthesize ergosterol, and most were tolerant to the polyene drugs amphotericin B and nystatin. Disruption of erg31(+) or erg32(+) did not cause ergosterol deficiency or tolerance to polyene drugs, indicating that the two C-5 sterol desaturases have overlapping functions. GFP-tagged DRM (detergent-resistant membrane)-associated protein Pma1p localized to the plasma membrane in ergDelta mutants. DRM fractionation revealed that the association between Pma1-GFP and DRM was weakened in erg6Delta but not in other erg mutants. Several GFP-tagged plasma membrane proteins were tested, and an amino acid permease homologue, SPBC359.03c, was found to mislocalize to intracellular punctate structures in the ergDelta mutants. These results indicate that these proteins are responsible for ergosterol biosynthesis in fission yeast, similar to the situation in Saccharomyces cerevisiae. Furthermore, in fission yeast, ergosterol is important for plasma membrane structure and function and for localization of plasma membrane proteins.


Yeast | 1998

Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt‐tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae

Tomoko Iwaki; Yuuichi Higashida; Hiromitsu Tsuji; Youichi Tamai; Yasuo Watanabe

We reported in our previous paper on the characterization of the Na+/H+‐antiporter gene (ZSOD2) closely related to the salt‐tolerance of yeast Zygosaccharomyces rouxii. In the present paper, we have cloned a second gene (ZSOD22) of Na+/H+ antiporter from Z. rouxii. The deduced amino acid sequence of Zsod22p was highly homologous to that of Zsod2p, Sod2p from Schizosaccharomyces pombe, and Nha1p from Saccharomyces cerevisiae. The open reading frames (ORFs) from ZSOD2 or ZSOD22 were inserted into a yeast expression vector pYES2, and their constructs (pZSOD2 and pZSOD22) were used to transform the salt‐sensitive S. cerevisiae. pZSOD2‐ or pZSOD22‐harboring‐recombinant S. cerevisiae cells showed increases in salt tolerance. However, the Z. rouxii disruptant of ZSOD22 did not show any phenotypes related to salt tolerance or osmotolerance, unlike that of ZSOD2. The transcriptional expression of ZSOD22 was not observed by Northern blot analysis even in Z. rouxii cells subjected to NaCl‐shock. From these results we conclude that although Z. rouxii includes at least two copies of the Na+/H+‐antiporter gene (ZSOD2 and ZSOD22), ZSOD2 encodes a functional product as an antiporter and ZSOD22 is poorly transcribed, if at all. The nucleotide sequence data of ZSOD22 will appear in the DDBJ, EMBL and GenBank nucleotide sequence databases with the following accession number: AB010106.


Yeast | 2004

Characterization of end4+, a gene required for endocytosis in Schizosaccharomyces pombe.

Tomoko Iwaki; Naotaka Tanaka; Hiroshi Takagi; Yuko Giga-Hama; Kaoru Takegawa

To understand endocytic trafficking in Schizosaccharomyces pombe, we constructed an end4 disruption mutant. The end4+ gene encodes a protein homologous to Sla2p/End4p, which is essential for the assembly and function of the cytoskeleton and endocytosis in Saccharomyces cerevisiae. We characterized the fission yeast mutant end4Δ as well as ypt7Δ, which is deficient in vacuolar fusion and, hence, endocytosis. The delivery of FM4‐64 to the vacuolar membrane, accumulation of Lucifer yellow CH and internalization of plasma membrane protein Map3–GFP were inhibited in the end4 mutant. Deletion of end4 resulted in pleiotropic phenotypes consistent with F‐actin depolarization, including high temperature sensitivity, abnormal morphology and mating defects. Extensive missorting of carboxypeptidase Y was detected in the ypt7 mutant; however, little missorting was detected in the end4 mutant. These results indicate that End4p is essential for the internalization process and Ypt7p affects endocytosis at a post‐internalization step after the intersection of the endocytic and the vacuolar protein‐sorting pathways in fission yeast. Copyright


Microbiology | 1999

Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene

Tomoko Iwaki; Youichi Tamai; Yasuo Watanabe

The salt-tolerant yeast Zygosaccharomyces rouxii can adjust its osmotic balance when responding to osmotic shock by accumulating glycerol as the compatible osmolyte. However, the mechanism of glycerol production in Z. rouxii cells and its genetic regulation remain to be elucidated. Two putative mitogen-activated protein (MAP) kinase genes, ZrHOG1 and ZrHOG2, were cloned from Z. rouxii by their homology with HOG1 from Saccharomyces cerevisiae. The deduced amino acid sequences of ZrHog1p and ZrHog2p indicated close homology to that of Hog1p and contained a TGY motif for phosphorylation by MAP kinase kinase. When ZrHOG1 or ZrHOG2 was expressed in an S. cerevisiae hog1delta null mutant, the salt tolerance and osmotic tolerance characteristics of wild-type S. cerevisiae were restored. In addition, the aberrant cell morphology and low glycerol content of the hog1delta null mutant were corrected, indicating that ZrHog1p and ZrHog2p have functions similar to Hog1p. While the transcription of the glycerol-3-phosphate dehydrogenase gene (GPD1) of the ZrHOG1-harbouring S. cerevisiae mutant was similar to that of wild-type S. cerevisiae, the ZrHOG2-harbouring strain showed prolonged GPD1 transcription. Both Zrhog1delta and Zrhog2delta Z. rouxii null mutants showed a decrease in salt tolerance compared to the wild-type strain. The present study suggested the presence of a high-osmolarity glycerol response (HOG) pathway in Z. rouxii similar to that elucidated in S. cerevisiae. Two putative MAP kinase genes in Z. rouxii appeared to be significant in either osmotic regulation or ion homeostasis.


Nucleic Acids Research | 2006

A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast

Kyotaro Hirashima; Tomoko Iwaki; Kaoru Takegawa; Yuko Giga-Hama; Hideki Tohda

The technologies for chromosome modification developed to date are not satisfactorily universal, owing to the typical requirements for special enzymes and sequences. In the present report, we propose a new approach for chromosome modification in Schizosaccharomyces pombe that does not involve any special enzymes or sequences. This method, designated the ‘Latour system’, has wide applicability with extremely high efficiency, although both the basic principle and the operation are very simple. We demonstrate the ability of the Latour system to discriminate essential genes, with a long chromosomal area of 100 kb containing 33 genes deleted simultaneously and efficiently. Since no foreign sequences are retained after deletion using the Latour system, this system can be repeatedly applied at other sites. Provided that a negative selectable marker is available, the Latour system relies solely upon homologous recombination, which is highly conserved in living organisms. For this reason, it is expected that the system will be applicable to various yeasts.


Bioscience, Biotechnology, and Biochemistry | 2004

A Set of loxP Marker Cassettes for Cre-mediated Multiple Gene Disruption in Schizosaccharomyces pombe

Tomoko Iwaki; Kaoru Takegawa

For functional analysis, the presence of gene families and isoenzymes often makes it necessary to delete more than one gene, while the number of marker genes is limited in Schizosaccharomyces pombe. Here we describe a loxP-flanked ura4 + cassette and Cre recombinase vector for a Cre-loxP-mediated marker removal procedure in S. pombe. This loxP-ura4-loxP cassette can be used for disruption of hmt1 + as a model target gene. We have constructed two vectors which express Cre recombinase under the control of the nmt1 or nmt41 promoter. Excisive recombination at loxP sites in the chromosome was promoted efficiently and accurately when the Cre recombinase was expressed under the control of the nmt41 promoter. In addition, ura4 + could be excised from the genome by Cre recombinase, when a single loxP site was adjacent to ura4. The use of the Cre-loxP system proved to be a practical strategy to excise a marker gene for repeated use in S. pombe.


Yeast | 2003

Characterization of vps33+, a gene required for vacuolar biogenesis and protein sorting in Schizosaccharomyces pombe

Tomoko Iwaki; Fumi Osawa; Masayuki Onishi; Takako Koga; Yasuko Fujita; Akira Hosomi; Naotaka Tanaka; Yasuhisa Fukui; Kaoru Takegawa

From the fission yeast Schizosaccharomyces pombe we have identified and deleted vps33, a gene encoding a homologue of VPS33, which is required for vacuolar biogenesis in S. cerevisiae cells. When the vps33+ gene is disrupted, Sz. pombe strains are temperature‐sensitive for growth and contain numerous small vesicular structures stained with FM4–64 in the cells. Deletion of the Sz. pombe vps33+ gene results in pleiotropic phenotypes consistent with the absence of normal vacuoles, including missorting of vacuolar carboxypeptidase Y, various ion‐ and drug‐sensitivities, and sporulation defects. These results are consistent with Vps33p being necessary for the morphogenesis of vacuoles and subsequent expression of vacuolar functions in Sz. pombe cells. Copyright


Molecular Genetics and Genomics | 2004

Characterization of Schizosaccharomyces pombe mutants defective in vacuolar acidification and protein sorting

Tomoko Iwaki; T. Goa; Naotaka Tanaka; Kaoru Takegawa

The vacuolar H+-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for acidification of intracellular compartments in eukaryotic cells. To investigate the functional roles of the V-ATPase in Schizosaccharomyces pombe, the gene vma1 encoding subunit A or vma3 encoding subunit c was disrupted. Both deletion mutants lost the capacity for vacuolar acidification in vivo, and showed sensitivity to neutral pH or high concentrations of divalent cations including Ca2+. The delivery of FM4-64 to the vacuolar membrane and accumulation of Lucifer Yellow CH were strongly inhibited in the vma1 and vma3 mutants. Moreover, deletion of the S. pombe vma1+ or vma3+ gene resulted in pleiotropic phenotypes consistent with lack of vacuolar acidification, including the missorting of vacuolar carboxypeptidase Y, abnormal vacuole morphology, and mating defects. These findings suggest that V-ATPase is essential for endocytosis, ion and pH homeostasis, and for intracellular targeting of vacuolar proteins and vacuolar biogenesis in S. pombe.


Yeast | 2001

Cloning of glycerol-3-phosphate dehydrogenase genes (ZrGPD1 and ZrGPD2) and glycerol dehydrogenase genes (ZrGCY1 and ZrGCY2) from the salt-tolerant yeast Zygosaccharomyces rouxii.

Tomoko Iwaki; Sachko Kurono; Yuki Yokose; Kenji Kubota; Youichi Tamai; Yasuo Watanabe

The ZrGPD1 and ZrGPD2 genes encoding putative glycerol‐3‐phosphate dehydrogenases were isolated from the salt‐tolerant yeast, Zygosaccharomyces rouxii. Both genes are homologous to GPD1 of Saccharomyces cerevisiae and are constitutively expressed in Z. rouxii cells. Putative glycerol dehydrogenase genes, ZrGCY1 and ZrGCY2, which are highly homologous to GCY1 of S. cerevisiae, were also isolated. Since the level of transcripts of ZrGCY1 and ZrGCY2 increased in Z. rouxii cells subjected to salt stress, it is suggested that the pathway of the signal transduction of salt stress controls the expression of these genes. The Accession Nos of these sequences in GenBank are as follows: ZrGPD1, AB047394; ZrGPD2, AB047395; ZrGCY1, AB047396; ZrGCY2, AB047397. Copyright


Journal of Bioscience and Bioengineering | 1999

Characterization of the Na+-ATPase gene (ZENA1) from the salt-tolerant yeast Zygosaccharomyces rouxii.

Yasuo Watanabe; Tomoko Iwaki; Yasutaka Shimono; Akihiro Ichimiya; Yoshiaki Nagaoka; Youichi Tamai

In order to clarify the relationship between the salt tolerance of Zygosaccharomyces rouxii and the function of Na+-ATPase, a gene which exhibited homology to the Na+-ATPase gene (ZENA1) of Saccharomyces cerevisiae was isolated from Z. rouxii. This newly isolated gene (ZENA1) encoded a product of 1048 amino acids. The predicted amino-acid sequence of Zena1p was highly homologous to that of S. cerevisiae Ena1p and Ena2p, and Schwanniomyces occidentalis Ena1p and Ena2p, but showed low homology to that of Zpma1p, which is the product of the Z. rouxii plasma membrane H+.ATPase gene (ZENA1). Zena1p shares the peptide motifs which have been suggested to participate in the function of ATPase. Expression of ZENA1 was observed, but was independent of NaCl shock. When ZENA1 was expressed in salt-sensitive S. cerevisiae under the regulation of a GAL1 promoter by using the expression vector pYES2, salt tolerance of the transformants was observed. The growth characteristics of Zena1Delta-disruptants of Z. rouxii and the pH profiles of their plasma membrane ATPase activity were almost the same as those of the wild-type strain, indicating that the function of Zena1p is of little relevance to the salt tolerance property of Z. rouxii. By considering the close relationship between the salt tolerance of Z. rouxii and the function of its Na+/H+-antiporter, we concluded that the extrusion of Na+ across the plasma membrane in Z. rouxii cells might be carried out mainly via the function of the Na+/H+-antiporter in a high salinity environment.

Collaboration


Dive into the Tomoko Iwaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge