Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomomi Izumikawa is active.

Publication


Featured researches published by Tomomi Izumikawa.


Journal of Biological Chemistry | 2003

Molecular cloning of a chondroitin polymerizing factor that cooperates with chondroitin synthase for chondroitin polymerization.

Hiroshi Kitagawa; Tomomi Izumikawa; Toru Uyama; Kazuyuki Sugahara

We recently cloned human chondroitin synthase (ChSy) exhibiting the glucuronyltransferase-II (GlcATII) and N-acetylgalactosaminyltransferase-II (GalNAcTII) activities responsible for the biosynthesis of repeating disaccharide units of chondroitin sulfate, but chondroitin polymerization was not demonstrated in vitro using the recombinant ChSy. We report here that the chondroitin polymerizing activity requires concomitant expression of a novel protein designated chondroitin polymerizing factor (ChPF) with ChSy. The human ChPF consists of 775 amino acids with a type II transmembrane protein topology. The amino acid sequence displayed 23% identity to that of human ChSy. The expression of a soluble recombinant form of the protein in COS-1 cells produced a protein with little GlcAT-II or GalNAcT-II activity. In contrast, coexpression of the ChPF and ChSy yielded markedly augmented glycosyltransferase activities, whereas simple mixing of the two separately expressed proteins did not. Moreover, using both UDP-glucuronic acid (GlcUA) and UDP-N-acetylgalactosamine (GalNAc) as sugar donors, chondroitin polymerization was demonstrated on the so-called glycosaminoglycan-protein linkage region tetrasaccharide sequence of α-thrombomodulin. These results suggested that the ChPF acts as a specific activating factor for ChSy in chondroitin polymerization. The coding region of the ChPF was divided into four discrete exons and localized to chromosome 2q35-q36. Northern blot analysis revealed that the ChPF gene exhibited a markedly different expression pattern among various human tissues, which was similar to that of ChSy. Thus, the ChPF is required for chondroitin polymerizing activity of mammalian ChSy.


Journal of Biological Chemistry | 2008

Identification of Chondroitin Sulfate Glucuronyltransferase as Chondroitin Synthase-3 Involved in Chondroitin Polymerization CHONDROITIN POLYMERIZATION IS ACHIEVED BY MULTIPLE ENZYME COMPLEXES CONSISTING OF CHONDROITIN SYNTHASE FAMILY MEMBERS

Tomomi Izumikawa; Toshiyasu Koike; Shoko Shiozawa; Kazuyuki Sugahara; Jun-ichi Tamura; Hiroshi Kitagawa

Recently, we demonstrated that chondroitin polymerization is achieved by any two combinations of human chondroitin synthase-1 (ChSy-1), ChSy-2 (chondroitin sulfate synthase 3, CSS3), and chondroitin-polymerizing factor (ChPF). Although an additional ChSy family member, called chondroitin sulfate glucuronyltransferase (CSGlcA-T), has been identified, its involvement in chondroitin polymerization remains unclear because it possesses only glucuronyltransferase II activity responsible for the elongation of chondroitin sulfate (CS) chains. Herein, we report that CSGlcA-T exhibits polymerization activity on α-thrombomodulin bearing the truncated linkage region tetrasaccharide through its interaction with ChSy-1, ChSy-2 (CSS3), or ChPF, and the chain length of chondroitin formed by the co-expressed proteins in various combinations is different. In addition, ChSy family members co-expressed in various combinations exhibited distinct but overlapping acceptor substrate specificities toward the two synthetic acceptor substrates, GlcUAβ1–3Galβ1-O-naphthalenemethanol and GlcUAβ1–3Galβ1-O-C2H4NH-benzyloxycarbonyl, both of which share the disaccharide sequence with the glycosaminoglycan-protein linkage region tetrasaccharide. Moreover, overexpression of CSGlcA-T increased the amount of CS in HeLa cells, whereas the RNA interference of CSGlcA-T resulted in a reduction of the amount of CS in the cells. Furthermore, the analysis using the CSGlcA-T mutant that lacks any glycosyltransferase activity but interacts with other ChSy family members showed that the glycosyltransferase activity of CSGlcA-T plays an important role in chondroitin polymerization. Overall, these results suggest that chondroitin polymerization is achieved by multiple combinations of ChSy-1, ChSy-2, CSGlcA-T, and ChPF and that each combination may play a unique role in the biosynthesis of CS. Based on these results, we renamed CSGlcA-T chondroitin synthase-3 (ChSy-3).


Biochemical Journal | 2009

FAM20B is a kinase that phosphorylates xylose in the glycosaminoglycan-protein linkage region.

Toshiyasu Koike; Tomomi Izumikawa; Jun-ichi Tamura; Hiroshi Kitagawa

2-O-phosphorylation of xylose has been detected in the glycosaminoglycan-protein linkage region, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser, of proteoglycans. Recent mutant analyses in zebrafish suggest that xylosyltransferase I and FAM20B, a protein of unknown function that shows weak similarity to a Golgi kinase encoded by four-jointed, operate in a linear pathway for proteoglycan production. In the present study, we identified FAM20B as a kinase that phosphorylates the xylose residue in the linkage region. Overexpression of FAM20B increased the amount of both chondroitin sulfate and heparan sulfate in HeLa cells, whereas the RNA interference of FAM20B resulted in a reduction of their amount in the cells. Gel-filtration analysis of the glycosaminoglycan chains synthesized in the overexpressing cells revealed that the glycosaminoglycan chains had a similar length to those in mock-transfected cells. These results suggest that FAM20B regulates the number of glycosaminoglycan chains by phosphorylating the xylose residue in the glycosaminoglycan-protein linkage region of proteoglycans.


Journal of Biological Chemistry | 2006

Chondroitin 4-O-sulfotransferase -1 regulates E disaccharide expression of chondroitin sulfate required for herpes simplex virus infectivity

Toru Uyama; Miho Ishida; Tomomi Izumikawa; Edward Trybala; Frank Tufaro; Tomas Bergström; Kazuyuki Sugahara; Hiroshi Kitagawa

We have demonstrated a defect in expression of chondroitin 4-O-sulfotransferase-1 (C4ST-1) in murine sog9 cells, which are poorly sensitive to infection by herpes simplex virus type 1 (HSV-1). Sog9 cells were previously isolated as CS-deficient cells from gro2C cells, which were partially resistant to HSV-1 infection and defective in the expression of heparan sulfate (HS) because of a splice site mutation in the EXT1 gene encoding the HS-synthesizing enzyme. Here we detected a small amount of CS chains in sog9 cells with a drastic decrease in 4-O-sulfation compared with the parental gro2C cells. RT-PCR revealed that sog9 cells had a defect in the expression of C4ST-1 in addition to EXT1. Gel filtration analysis showed that the decrease in the amount of CS in sog9 cells was the result of a reduction in the length of CS chains. Transfer of C4ST-1 cDNA into sog9 cells (sog9-C4ST-1) restored 4-O-sulfation and amount of CS, verifying that sog9 cells had a specific defect in C4ST-1. Furthermore, the expression of C4ST-1 rendered sog9 cells significantly more susceptible to HSV-1 infection, suggesting that CS modified by C4ST-1 is sufficient for the binding and infectivity of HSV-1. Analysis of CS chains of gro2C and sog9-C4ST-1 cells revealed a considerable proportion of the E disaccharide unit, consistent with our recent finding that this unit is an essential component of the HSV receptor. These results suggest that C4ST-1 regulates the expression of the E disaccharide unit and the length of CS chains, the features that facilitate infection of cells by HSV-1.


Biochemical Journal | 2007

Involvement of chondroitin sulfate synthase-3 (chondroitin synthase-2) in chondroitin polymerization through its interaction with chondroitin synthase-1 or chondroitin-polymerizing factor

Tomomi Izumikawa; Toru Uyama; Yuka Okuura; Kazuyuki Sugahara; Hiroshi Kitagawa

Previously, we have demonstrated that co-expression of ChSy-1 (chondroitin synthase-1), with ChPF (chondroitin-polymerizing factor) resulted in a marked augmentation of glycosyltransferase activities and the expression of the chondroitin polymerase activity of ChSy-1. These results prompted us to evaluate the effects of co-expression of the recently cloned CSS3 (chondroitin sulfate synthase-3) with ChPF, because ChSy-1 and CSS3 have similar properties, i.e. they possess GalNAcT-II (N-acetylgalactosaminyltransferase-II) and GlcAT-II (glucuronyltransferase-II) activities responsible for the elongation of CS (chondroitin sulfate) chains but cannot polymerize chondroitin chains by themselves. Co-expressed CSS3 and ChPF showed not only substantial GalNAcT-II and GlcAT-II activities but also chondroitin polymerase activity. Interestingly, co-expressed ChSy-1 and CSS3 also exhibited polymerase activity. The chain length of chondroitin formed by the co-expressed proteins in various combinations was different. In addition, interactions between any two of ChSy-1, CSS3 and ChPF were demonstrated by pull-down assays. Moreover, overexpression of CSS3 increased the amount of CS in HeLa cells, while the RNA interference of CSS3 resulted in a reduction in the amount of CS in the cells. Altogether these results suggest that chondroitin polymerization is achieved by multiple combinations of ChSy-1, CSS3 and ChPF. Based on these characteristics, we have renamed CSS3 ChSy-2 (chondroitin synthase-2).


Journal of Biological Chemistry | 2004

Nematode chondroitin polymerizing factor showing cell-/organ-specific expression is indispensable for chondroitin synthesis and embryonic cell division.

Tomomi Izumikawa; Hiroshi Kitagawa; Souhei Mizuguchi; Kazuko H. Nomura; Kazuya Nomura; Jun-ichi Tamura; Keiko Gengyo-Ando; Shohei Mitani; Kazuyuki Sugahara

Chondroitin polymerization was first demonstrated in vitro when human chondroitin synthase (ChSy) was coexpressed with human chondroitin polymerizing factor (ChPF), which is homologous to ChSy but has little glycosyltransferase activity. To analyze the biological function of chondroitin, the Caenorhabditis elegans ortholog of human ChSy (sqv-5) was recently cloned, and the expression of its product was depleted by RNA-mediated interference (RNAi) and deletion mutagenesis. Blocking of chondroitin synthesis resulted in defects of cytokinesis in early embryogenesis, and eventually, cell division stopped. Here, we cloned the ortholog of human ChPF in C. elegans, PAR2.4. Despite little glycosyltransferase activity of the gene product, chondroitin polymerization was demonstrated as in the case of mammals when PAR2.4 was coexpressed with cChSy in vitro. The worm phenotypes including the reversion of cytokinesis, observed after the depletion of PAR2.4 by RNAi, were very similar to the cChSy (sqv-5)-RNAi phenotypes. Thus, PAR2.4 in addition to cChSy is indispensable for the biosynthesis of chondroitin in C. elegans, and the two cooperate to synthesize chondroitin in vivo. The expression of the PAR2.4 protein was observed in seam cells, which can act as neural stem cells in early embryonic lineages. The expression was also detected in vulva and distal tip cells of the growing gonad arms from L3 through to the young adult stage. These findings are consistent with the notion that chondroitin is involved in the organogenesis of the vulva and maturation of the gonad and also indicative of an involvement in distal tip cell migration and neural development.


Journal of Biological Chemistry | 2010

Impairment of embryonic cell division and glycosaminoglycan biosynthesis in glucuronyltransferase-I-deficient mice

Tomomi Izumikawa; Nao Kanagawa; Yukiko Watamoto; Megumi Okada; Mika Saeki; Masahiro Sakano; Kazuyuki Sugahara; Kazushi Sugihara; Masahide Asano; Hiroshi Kitagawa

We have revealed that in Caenorhabditis elegans, non-sulfated chondroitin is required for normal cell division and cytokinesis at an early developmental stage, whereas heparan sulfate is essential for embryonic morphogenesis in the later stages of development. To clarify the roles of chondroitin sulfate and heparan sulfate in early embryogenesis in mammals, we generated glucuronyltransferase-I (GlcAT-I) knock-out mice by gene targeting. GlcAT-I is an enzyme required for the synthesis of both chondroitin sulfate and heparan sulfate. Here we report that mice with a deletion of GlcAT-I showed remarkable reduction of the synthesis of chondroitin sulfate and heparan sulfate and embryonic lethality before the 8-cell stage because of failed cytokinesis. In addition, treatment of wild-type 2-cell embryos with chondroitinase ABC had marked effects on cell division, although many heparitinase-treated embryos normally developed to blastocysts. Taken together, these results suggest that chondroitin sulfate in mammals, as with non-sulfated chondroitin in C. elegans, is indispensable for embryonic cell division.


Journal of Biological Chemistry | 2008

2-O-Phosphorylation of Xylose and 6-O-Sulfation of Galactose in the Protein Linkage Region of Glycosaminoglycans Influence the Glucuronyltransferase-I Activity Involved in the Linkage Region Synthesis

Yuko Tone; Lars C. Pedersen; Tomoko Yamamoto; Tomomi Izumikawa; Hiroshi Kitagawa; Junko Nishihara; Jun-ichi Tamura; Masahiko Negishi; Kazuyuki Sugahara

Sulfated glycosaminoglycans (GAGs), including heparan sulfate and chondroitin sulfate, are synthesized on the so-called common GAG-protein linkage region (GlcUAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser) of core proteins, which is formed by the stepwise addition of monosaccharide residues by the respective specific glycosyltransferases. Glucuronyltransferase-I (GlcAT-I) is the key enzyme that completes the synthesis of this linkage region, which is a prerequisite for the conversion of core proteins to functional proteoglycans bearing GAGs. The Xyl and Gal residues in the linkage region can be modified by phosphorylation and sulfation, respectively, although the biological significance of these modifications remains to be clarified. Here we present evidence that these modifications can significantly influence the catalytic activity of GlcAT-I. Enzyme assays showed that the synthetic substrates, Gal-Gal-Xyl(2-O-phosphate)-O-Ser and Gal-Gal(6-O-sulfate)-Xyl(2-O-phosphate)-O-Ser, served as better substrates than the unmodified compound, whereas Gal(6-O-sulfate)-Gal-Xyl(2-O-phosphate)-O-Ser exhibited no acceptor activity. The crystal structure of the catalytic domain of GlcAT-I with UDP and Gal-Gal(6-O-sulfate)-Xyl(2-O-phosphate)-O-Ser bound revealed that the Xyl(2-O-phosphate)-O-Ser is disordered and the 6-O-sulfate forms interactions with Gln318 from the second GlcAT-I monomer in the dimeric enzyme. The results indicate the possible involvement of these modifications in the processing and maturation of the growing linkage region oligosaccharide required for the assembly of GAG chains.


Biochemical Journal | 2010

Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development

Yumi Watanabe; Kosei Takeuchi; Susumu Higa Onaga; Michiko Sato; Mika Tsujita; Manabu Abe; Rie Natsume; Minqi Li; Tatsuya Furuichi; Mika Saeki; Tomomi Izumikawa; Ayumi Hasegawa; Minesuke Yokoyama; Shiro Ikegawa; Kenji Sakimura; Norio Amizuka; Hiroshi Kitagawa; Michihiro Igarashi

CS (chondroitin sulfate) is a glycosaminoglycan species that is widely distributed in the extracellular matrix. To understand the physiological roles of enzymes involved in CS synthesis, we produced CSGalNAcT1 (CS N-acetylgalactosaminyltransferase 1)-null mice. CS production was reduced by approximately half in CSGalNAcT1-null mice, and the amount of short-chain CS was also reduced. Moreover, the cartilage of the null mice was significantly smaller than that of wild-type mice. Additionally, type-II collagen fibres in developing cartilage were abnormally aggregated and disarranged in the homozygous mutant mice. These results suggest that CSGalNAcT1 is required for normal CS production in developing cartilage.


Scientific Reports | 2015

Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells

Tomomi Izumikawa; Ban Sato; Hiroshi Kitagawa

Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.

Collaboration


Dive into the Tomomi Izumikawa's collaboration.

Top Co-Authors

Avatar

Hiroshi Kitagawa

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiyasu Koike

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Kazuya Nomura

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiko Gengyo-Ando

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge