Tomy dos Santos Rolo
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomy dos Santos Rolo.
Scientific Reports | 2015
Shyjumon Ibrahimkutty; Philipp Wagener; Tomy dos Santos Rolo; Dmitry Karpov; Andreas Menzel; Tilo Baumbach; Stephan Barcikowski; Anton Plech
Pulsed-laser assisted nanoparticle synthesis in liquids (PLAL) is a versatile tool for nanoparticle synthesis. However, fundamental aspects of structure formation during PLAL are presently poorly understood. We analyse the spatio-temporal kinetics during PLAL by means of fast X-ray radiography (XR) and scanning small-angle X-ray scattering (SAXS), which permits us to probe the process on length scales from nanometers to millimeters with microsecond temporal resolution. We find that the global structural evolution, such as the dynamics of the vapor bubble can be correlated to the locus and evolution of silver nanoparticles. The bubble plays an important role in particle formation, as it confines the primary particles and redeposits them to the substrate. Agglomeration takes place for the confined particles in the second bubble. Additionally, upon the collapse of the second bubble a jet of confined material is ejected perpendicularly to the surface. We hypothesize that these kinetics influence the final particle size distribution and determine the quality of the resulting colloids, such as polydispersity and modality through the interplay between particle cloud compression and particle release into the liquid.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Tomy dos Santos Rolo; Alexey Ershov; Thomas van de Kamp; Tilo Baumbach
Significance X-ray microtomography is a well-established tool to study the three-dimensional morphology of static biological samples. To capture motion in living specimen in real time, movies of X-ray projections are frequently used. However, the resulting loss of information about the third spatial dimension has limited the applicability of such acquisition protocols. Now, by combining ultrafast X-ray microtomography and sophisticated motion analysis, we developed X-ray cine-tomography as a tool to visualize the internal dynamics of nontranslucent millimeter-sized samples in three-dimensional space. We demonstrate the technique by analyzing the fast-moving screw-and-nut–type hip joint inside a living weevil. The method may be applied to a wide range of samples and processes across materials and life sciences. Scientific cinematography using ultrafast optical imaging is a common tool to study motion. In opaque organisms or structures, X-ray radiography captures sequences of 2D projections to visualize morphological dynamics, but for many applications full four-dimensional (4D) spatiotemporal information is highly desirable. We introduce in vivo X-ray cine-tomography as a 4D imaging technique developed to study real-time dynamics in small living organisms with micrometer spatial resolution and subsecond time resolution. The method enables insights into the physiology of small animals by tracking the 4D morphological dynamics of minute anatomical features as demonstrated in this work by the analysis of fast-moving screw-and-nut–type weevil hip joints. The presented method can be applied to a broad range of biological specimens and biotechnological processes.
PLOS ONE | 2014
Thomas van de Kamp; Tomy dos Santos Rolo; Patrik Vagovič; Tilo Baumbach; Alexander Riedel
Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering.
ieee international conference on high performance computing data and analytics | 2012
Matthias Vogelgesang; Suren Chilingaryan; Tomy dos Santos Rolo; Andreas Kopmann
Current synchrotron experiments require state-of-the-art scientific cameras with sensors that provide several million pixels, each at a dynamic range of up to 16 bits and the ability to acquire hundreds of frames per second. The resulting data bandwidth of such a data stream reaches several Gigabits per second. These streams have to be processed in real-time to achieve a fast process response. In this paper we present a computation framework and middleware library that provides re-usable building blocks to implement high-performance image processing algorithms without requiring profound hardware knowledge. It is based on a graph structure of computation nodes that process image transformation kernels on either CPU or GPU using the OpenCL sub-system. This system architecture allows deployment of the framework on a large range of computational hardware, from netbooks to hybrid compute clusters. We evaluated the library with standard image processing algorithms required for high quality tomographic reconstructions. The results show that speed-ups from 7× to 37× compared to traditional CPU-based solutions can be achieved with our approach, hence providing an opportunity for real-time on-line monitoring at synchrotron beam lines.
ieee-npss real-time conference | 2010
Suren Chilingaryan; Alessandro Mirone; Andrew Hammersley; Claudio Ferrero; Lukas Helfen; Andreas Kopmann; Tomy dos Santos Rolo; Patrik Vagovič
Current imaging experiments at synchrotron beam lines often lack a real-time data assessment. X-ray imaging cameras installed at synchrotron facilities like ANKA provide millions of pixels, each with a resolution of 12 bits or more, and take up to several thousand frames per second. A given experiment can produce data sets of multiple gigabytes in a few seconds. Up to now the data is stored in local memory, transferred to mass storage, and then processed and analyzed off-line. The data quality and thus the success of the experiment, can, therefore, only be judged with a substantial delay, which makes an immediate monitoring of the results impossible. To optimize the usage of the micro-tomography beam-line at ANKA we have ported the reconstruction software to modern graphic adapters which offer an enormous amount of calculation power. We were able to reduce the reconstruction time from multiple hours to just a few minutes with a sample dataset of 20 GB. Using the new reconstruction software it is possible to provide a near real-time visualization and significantly reduce the time needed for the first evaluation of the reconstructed sample. The main paradigm of our approach is 100% utilization of all system resources. The compute intensive parts are offloaded to the GPU. While the GPU is reconstructing one slice, the CPUs are used to prepare the next one. A special attention is devoted to minimize data transfers between the host and GPU memory and to execute I/O operations in parallel with the computations. It could be shown that for our application not the computational part but the data transfers are now limiting the speed of the reconstruction. Several changes in the architecture of the DAQ system are proposed to overcome this second bottleneck. The article will introduce the system architecture, describe the hardware platform in details, and analyze performance gains during the first half year of operation.
Scientific Reports | 2016
Diying Huang; Günter Bechly; Patricia Nel; Michael S. Engel; Jakub Prokop; Dany Azar; Chenyang Cai; Thomas van de Kamp; Arnold H. Staniczek; Romain Garrouste; Lars Krogmann; Tomy dos Santos Rolo; Tilo Baumbach; Rainer Ohlhoff; Alexey S. Shmakov; Thierry Bourgoin; André Nel
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These “missing links” fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.
Journal of Colloid and Interface Science | 2017
Stefan Reich; Patrick Schönfeld; Philipp Wagener; Alexander Letzel; Shyjumon Ibrahimkutty; Bilal Gökce; Stephan Barcikowski; Andreas Menzel; Tomy dos Santos Rolo; Anton Plech
Pulsed laser ablation in liquids (PLAL) is a multiscale process, involving multiple mutually interacting phenomena. In order to synthesize nanoparticles with well-defined properties it is important to understand the dynamics of the underlying structure evolution. We use visible-light stroboscopic imaging and X-ray radiography to investigate the dynamics occurring during PLAL of silver and gold on a macroscopic scale, whilst X-ray small angle scattering is utilized to deepen the understanding on particle genesis. By comparing our results with earlier reports we can elucidate the role of the cavitation bubble. We find that symmetry breaking at the liquid-solid interface is a critical factor for bubble motion and that the bubble motion acts on the particle distribution as confinement and retraction force to create secondary agglomerates.
Optics Express | 2015
Xiaoli Yang; Ralf Hofmann; Robin Dapp; Thomas van de Kamp; Tomy dos Santos Rolo; Xianghui Xiao; Julian Moosmann; Jubin Kashef; Rainer Stotzka
High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.
Scientific Reports | 2017
Olimpia Onelli; Thomas van de Kamp; Jeremy N. Skepper; Janet M. Powell; Tomy dos Santos Rolo; Tilo Baumbach; Silvia Vignolini
Structural colours in living organisms have been observed and analysed in a large number of species, however the study of how the micro- and nano-scopic natural structures responsible of such colourations develop has been largely ignored. Understanding the interplay between chemical composition, structural morphology on multiple length scales, and mechanical constraints requires a range of investigation tools able to capture the different aspects of natural hierarchical architectures. Here, we report a developmental study of the most widespread strategy for structural colouration in nature: the cuticular multilayer. In particular, we focus on the exoskeletal growth of the dock leaf beetle Gastrophysa viridula, capturing all aspects of its formation: the macroscopic growth is tracked via synchrotron microtomography, while the submicron features are revealed by electron microscopy and light spectroscopy combined with numerical modelling. In particular, we observe that the two main factors driving the formation of the colour-producing multilayers are the polymerization of melanin during the ecdysis and the change in the layer spacing during the sclerotisation of the cuticle. Our understanding of the exoskeleton formation provides a unique insight into the different processes involved during metamorphosis.
Scientific Reports | 2017
Nadja C. Wulff; Thomas van de Kamp; Tomy dos Santos Rolo; Tilo Baumbach; Gerlind U. C. Lehmann
Male genital organs are among the fastest evolving morphological structures. However, large parts of the male’s genitalia are often hidden inside the female during mating. In several bushcricket species, males bear a pair of sclerotized genital appendices called titillators. By employing synchrotron-based in vivo X-ray cineradiography on mating couples, we were able to visualize titillator movement and spermatophore attachment inside the female. Titillators are inserted and retracted rhythmically. During insertion the titillator processes tap the soft and sensillae-covered dorsal side of the female’s flap-like genital fold, which covers the opening of the female’s genitalia, without tissue penetration. Titillators thus appear to be initially used for stimulation; later they may apply pressure that forces the female’s genital fold to stay open, thereby aiding mechanically in spermatophore transfer.