Tone F. Gregers
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tone F. Gregers.
Nature | 2011
Bastiaan Star; Sissel Jentoft; Unni Grimholt; Martin Malmstrøm; Tone F. Gregers; Trine B. Rounge; Jonas Paulsen; Monica Hongrø Solbakken; Animesh Sharma; Ola F. Wetten; Anders Lanzén; Roger Winer; James Knight; Jan-Hinnerk Vogel; Bronwen Aken; Øivind Andersen; Karin Lagesen; Ave Tooming-Klunderud; Rolf B. Edvardsen; Kirubakaran G. Tina; Mari Espelund; Chirag Nepal; Christopher Previti; Bård Ove Karlsen; Truls Moum; Morten Skage; Paul R. Berg; Tor Gjøen; Heiner Kuhl; Jim Thorsen
Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.
Scandinavian Journal of Immunology | 2009
Ole J.B. Landsverk; Oddmund Bakke; Tone F. Gregers
The major histocompatibility complex (MHC) class I and II molecules perform vital functions in innate and adaptive immune responses towards invading pathogens. MHC class I molecules load peptides in the endoplasmatic reticulum (ER) and display them to the T cell receptors (TcR) on CD8+ T lymphocytes. MHC class II molecules (MHC II) acquire their peptides in endosomes and present these to the TcR on CD4+ T lymphocytes. They are vital for the generation of humoral immune responses. MHC II assembly in the ER and trafficking to endosomes is guided by a specialized MHC II chaperone termed the invariant chain (Ii). Ii self‐associates into a trimer in the ER, this provides a scaffold for the assembly of three MHC II heterodimers and blocks their peptide binding grooves, thereby avoiding premature peptide binding. Ii then transports the nascent MHC II to more or less specialized compartment where they can load peptides derived from internalized pathogens.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Cécile Lagaudrière-Gesbert; Sherri L. Newmyer; Tone F. Gregers; Oddmund Bakke; Hidde L. Ploegh
Targeting of class II major histocompatibility complex molecules to endocytic compartments is mediated by their association with the invariant chain (Ii). Although the identity of certain sorting signals located in Iis cytoplasmic tail is known, proteins that interact with Iis cytoplasmic tail in living cells remain to be identified. Synthesis of a biotinylated trimeric Ii cytoplasmic tail allowed the retrieval of two proteins that interact with this domain. We identify one of them as the 70-kDa heat-shock cognate protein (hsc70), the uncoating ATPase of clathrin-coated vesicles, and the other as its mitochondrial homologue, the glucose-regulated protein grp75. Expression of Ii in COS cells results in the formation of large endocytic compartments. We observe extensive colocalization of hsc70 with Ii in these macrosomes. Expression of a dominant-negative (K71M) green fluorescent protein-tagged version of hsc70 counteracted the ability of Ii to modify the endocytic pathway, demonstrating an interaction in vivo of Ii with hsc70 as part of the machinery responsible for macrosome formation.
Journal of Cell Science | 2012
Frode Miltzow Skjeldal; Sten Strunze; Trygve Bergeland; Even Walseng; Tone F. Gregers; Oddmund Bakke
Organelles in the endocytic pathway interact and communicate through the crucial mechanisms of fusion and fission. However, any specific link between fusion and fission has not yet been determined. To study the endosomal interactions with high spatial and temporal resolution, we enlarged the endosomes by two mechanistically different methods: by expression of the MHC-class-II-associated chaperone invariant chain (Ii; or CD74) or Rab5, both of which increased the fusion rate of early endosomes and resulted in enlarged endosomes. Fast homotypic fusions were studied, and immediately after the fusion a highly active and specific tubule formation and fission was observed. These explosive tubule formations following fusion seemed to be a direct effect of fusion. The tubule formations were dependent on microtubule interactions, and specifically controlled by Kif16b and dynein. Our results show that fusion of endosomes is a rapid process that destabilizes the membrane and instantly induces molecular-motor-driven tubule formation and fission.
European Journal of Immunology | 2003
Tone F. Gregers; Tommy W. Nordeng; Hanne C. G. Birkeland; Inger Sandlie; Oddmund Bakke
The MHC class II‐associated invariant chain (Ii) has several important functions in antigen presentation. In this study, we have examined the effect of Iip33 expression on endocytic transport and antigen presentation. We find that degradation of both endocytosed antigen and Ii itself is delayed in cells expressing high levels of Ii, whereas a mutant Ii with an altered charge distributionin the cytoplasmic tail was unable to exert this effect. Furthermore, the Ii mutant did not enhance the presentation of an Ii‐dependent MHC class II‐restricted epitope to the same extent as the wild type. In a parallel study, we investigated the effect of charge in the cytoplasmic tail of Ii. We find that due to exposed negative charges, it promotes endosome fusion events, and we suggest thatthis causes endosomal retention (Nordeng et al., Mol. Biol. Cell 2002). Together, the data reveal an additional property of the Iip33 cytoplasmic tail that contributes to the modulation of antigen processing and presentation.
PLOS ONE | 2013
Martin Malmstrøm; Sissel Jentoft; Tone F. Gregers; Kjetill S. Jakobsen
Genes encoding the major histocompatibility complex (MHC) have been thought to play a vital role in the adaptive immune system in all vertebrates. The discovery that Atlantic cod (Gadus morhua) has lost important components of the MHC II pathway, accompanied by an unusually high number of MHC I genes, shed new light on the evolution and plasticity of the immune system of teleosts as well as in higher vertebrates. The overall aim of this study was to further investigate the highly expanded repertoire of MHC I genes using a cDNA approach to obtain sequence information of both the binding domains and the sorting signaling potential in the cytoplasmic tail. Here we report a novel combination of two endosomal sorting motifs, one tyrosine-based associated with exogenous peptide presentation by cross-presenting MHCI molecules, and one dileucine-based associated with normal MHC II functionality. The two signal motifs were identified in the cytoplasmic tail in a subset of the genes. This indicates that these genes have evolved MHC II-like functionality, allowing a more versatile use of MHC I through cross-presentation. Such an alternative immune strategy may have arisen through adaptive radiation and acquisition of new gene function as a response to changes in the habitat of its ancestral lineage.
Journal of Immunological Methods | 2000
Janne K. Eidem; Ingunn B. Rasmussen; Elin Lunde; Tone F. Gregers; Anthony R Rees; Bjarne Bogen; Inger Sandlie
A major objective in development of vaccines is the design of sub-unit vaccines with the ability to induce strong T-cell responses. For this purpose, T-cell epitopes have been genetically inserted into various carrier proteins. Ig molecules may be especially useful as vehicles for delivery of CD4(+) T-cell epitopes to antigen presenting cells (APC). We have previously replaced loop structures between beta-strands in the C(H)1 domain of human IgG3 with a defined 11 amino acids long, MHC class II-restricted T-cell epitope. In this report we have added the same T-cell epitope into loops in the C(H)1 domain of mouse IgG2b. The following major points can be made: (1) Loops can accommodate an elongation of at least 11 amino acids without disruption of the overall Ig structure and secretion. (2) The recombinant Ig molecules are processed by spleen APC and the epitopes that are released are presented to T-cells. (3) Site of integration influences efficiency of processing and presentation. (4) Elongation of two neighbouring loops reduces Ig secretion. Taken together, our present results indicate that IgG C(H)1 domains may be engineered to carry T-cell epitopes in loop structures between beta-strands, but not all loops may be equally suitable for this purpose.
Immunology and Cell Biology | 2011
Ole J.B. Landsverk; Nicolas Barois; Tone F. Gregers; Oddmund Bakke
Mounting adaptive immune responses requires the cell surface expression of major histocompatibility class II molecules (MHC II) loaded with antigenic peptide. However, in the absence of antigenic stimuli, the surface population of MHC II is highly dynamic and exhibits a high turnover. Several studies have focused on the regulation of MHC II, and it is now recognized that ubiquitination is one key mechanism operating in the turnover of MHC II in B cells and dendritic cells. Here, we describe how the invariant chain (Ii) can prolong the half‐life of MHC II through its action on the endocytic pathway. We find that in cells expressing intermediate‐to‐high levels of Ii, the half‐life of MHC II is increased, with MHC II accumulating in slowly‐maturing endosomes. The accumulation in endosomes is not due to retention of new MHC II directed from the endoplasmatic reticulum, as also mature, not Ii associated, MHC II is preserved. We suggest that this alternative endocytic pathway induced by Ii would serve to enhance the rate, quantity and diversity of MHC II antigen presentation by concentrating MHC II into specialized compartments and reducing the need for new MHC II synthesis upon antigen encounter.
European Journal of Immunology | 2006
Terje E. Michaelsen; John E. Thommesen; Øistein Ihle; Tone F. Gregers; Randi Sandin; Ole Henrik Brekke; Inger Sandlie
There are potentially two binding sites for C1q on IgG, one on each CH2 domain of the gamma heavy chains, close to the lower hinge region. It is not clear whether the presence and involvement of both the C1q binding sites is necessary to induce the activation signal of human IgG. In order to clarify this issue, we made a hybrid mutant IgG1/IgG3 molecule where the IgG1 half of the molecule was made unable to activate complement through the introduction of a P329A mutation. The IgG3 half of the molecule was mutated to harbor a hinge region identical to that of IgG1, and for detection a peptide tag derived from p21ras was introduced into the FG loop of the CH1 domain. The hybrid IgG1P329A/IgG3h1‐ras molecules were isolated by Protein A affinity chromatography and shown to activate complement and induce complement‐mediated lysis at the same levels as wild‐type IgG1 and IgG3h1‐ras molecules. Thus, one C1q binding site per IgG is sufficient to induce activation. Wild‐type human IgG molecules might also normally expose only one C1q binding site as already shown for interaction with FcγR, were IgG expose one binding site per molecule.
Scientific Reports | 2016
Monica Hongrø Solbakken; Ole Kristian Tørresen; Marit Seppola; Tone F. Gregers; Kjetill S. Jakobsen; Sissel Jentoft
Genome sequencing of the teleost Atlantic cod demonstrated loss of the Major Histocompatibility Complex (MHC) class II, an extreme gene expansion of MHC class I and gene expansions and losses in the innate pattern recognition receptor (PRR) family of Toll-like receptors (TLR). In a comparative genomic setting, using an improved version of the genome, we characterize PRRs in Atlantic cod with emphasis on TLRs demonstrating the loss of TLR1/6, TLR2 and TLR5 and expansion of TLR7, TLR8, TLR9, TLR22 and TLR25. We find that Atlantic cod TLR expansions are strongly influenced by diversifying selection likely to increase the detectable ligand repertoire through neo- and subfunctionalization. Using RNAseq we find that Atlantic cod TLRs display likely tissue or developmental stage-specific expression patterns. In a broader perspective, a comprehensive vertebrate TLR phylogeny reveals that the Atlantic cod TLR repertoire is extreme with regards to losses and expansions compared to other teleosts. In addition we identify a substantial shift in TLR repertoires following the evolutionary transition from an aquatic vertebrate (fish) to a terrestrial (tetrapod) life style. Collectively, our findings provide new insight into the function and evolution of TLRs in Atlantic cod as well as the evolutionary history of vertebrate innate immunity.