Ole J.B. Landsverk
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ole J.B. Landsverk.
Scandinavian Journal of Immunology | 2009
Ole J.B. Landsverk; Oddmund Bakke; Tone F. Gregers
The major histocompatibility complex (MHC) class I and II molecules perform vital functions in innate and adaptive immune responses towards invading pathogens. MHC class I molecules load peptides in the endoplasmatic reticulum (ER) and display them to the T cell receptors (TcR) on CD8+ T lymphocytes. MHC class II molecules (MHC II) acquire their peptides in endosomes and present these to the TcR on CD4+ T lymphocytes. They are vital for the generation of humoral immune responses. MHC II assembly in the ER and trafficking to endosomes is guided by a specialized MHC II chaperone termed the invariant chain (Ii). Ii self‐associates into a trimer in the ER, this provides a scaffold for the assembly of three MHC II heterodimers and blocks their peptide binding grooves, thereby avoiding premature peptide binding. Ii then transports the nascent MHC II to more or less specialized compartment where they can load peptides derived from internalized pathogens.
EMBO Reports | 2010
Helga B. Landsverk; Felipe Mora-Bermúdez; Ole J.B. Landsverk; Grete Hasvold; Soheil Naderi; Oddmund Bakke; Jan Ellenberg; Philippe Collas; Randi G. Syljuåsen; Thomas Küntziger
The function of protein phosphatase 1 nuclear‐targeting subunit (PNUTS)—one of the most abundant nuclear‐targeting subunits of protein phosphatase 1 (PP1c)—remains largely uncharacterized. We show that PNUTS depletion by small interfering RNA activates a G2 checkpoint in unperturbed cells and prolongs G2 checkpoint and Chk1 activation after ionizing‐radiation‐induced DNA damage. Overexpression of PNUTS–enhanced green fluorescent protein (EGFP)—which is rapidly and transiently recruited at DNA damage sites—inhibits G2 arrest. Finally, γH2AX, p53‐binding protein 1, replication protein A and Rad51 foci are present for a prolonged period and clonogenic survival is decreased in PNUTS‐depleted cells after ionizing radiation treatment. We identify the PP1c regulatory subunit PNUTS as a new and integral component of the DNA damage response involved in DNA repair.
Journal of Experimental Medicine | 2017
Ole J.B. Landsverk; Omri Snir; Raquel Bartolomé Casado; Lisa Richter; Jeff E. Mold; Pedro Réu; Rune Horneland; Vemund Paulsen; Sheraz Yaqub; Einar Martin Aandahl; Ole Øyen; Hildur Sif Thorarensen; Mehran Salehpour; Göran Possnert; Jonas Frisén; Ludvig M. Sollid; Espen S. Baekkevold; Frode L. Jahnsen
Plasma cells (PCs) produce antibodies that mediate immunity after infection or vaccination. In contrast to PCs in the bone marrow, PCs in the gut have been considered short lived. In this study, we studied PC dynamics in the human small intestine by cell-turnover analysis in organ transplants and by retrospective cell birth dating measuring carbon-14 in genomic DNA. We identified three distinct PC subsets: a CD19+ PC subset was dynamically exchanged, whereas of two CD19− PC subsets, CD45+ PCs exhibited little and CD45− PCs no replacement and had a median age of 11 and 22 yr, respectively. Accumulation of CD45− PCs during ageing and the presence of rotavirus-specific clones entirely within the CD19− PC subsets support selection and maintenance of protective PCs for life in human intestine.
EMBO Reports | 2008
Trygve Bergeland; Linda Hofstad Haugen; Ole J.B. Landsverk; Harald Stenmark; Oddmund Bakke
Early endosomal antigen 1 (EEA1) is a cytosolic protein that specifically binds to early endosomal membranes where it has a crucial role in the tethering process leading to homotypic endosome fusion. Green fluorescent protein‐tagged EEA1 (EEA1‐GFP) was bound to the endosomal membrane throughout the cell cycle, and measurements using fluorescent recovery after photobleaching showed two fractions: one rapidly exchanging with the cytosolic pool, and the other with a long half‐life. The exchange consists of a release and binding process, and we have separated these two by using GFP and photoactivable GFP. The release rate was identical to the exchange rate, showing that the dissociation characteristics determine the cycling of this molecule. During mitosis, we found that the dissociation rate was markedly accelerated and, in addition, the long‐lived fraction was markedly reduced. This indicates that a fusion arrest in mitosis is not the result of EEA1 not binding to early endosomes, but rather due to the marked shift in membrane‐binding characteristics. This might be a general mechanism to fine‐tune and control tethering and fusion of early endosomes.
Journal of the American College of Cardiology | 2015
Anett Hellebø Ottesen; William E. Louch; Cathrine R. Carlson; Ole J.B. Landsverk; Jouni Kurola; Rune F. Johansen; Morten K. Moe; Jan Magnus Aronsen; Arne Didrik Høiseth; Hilde Jarstadmarken; Ståle Nygård; Magnar Bjørås; Ivar Sjaastad; Ville Pettilä; Mats Stridsberg; Torbjørn Omland; Geir Christensen; Helge Røsjø
BACKGROUND Secretoneurin (SN) levels are increased in patients with heart failure (HF), but whether SN provides prognostic information and influences cardiomyocyte function is unknown. OBJECTIVES This study sought to evaluate the merit of SN as a cardiovascular biomarker and assess effects of SN on cardiomyocyte Ca(2+) handling. METHODS We assessed the association between circulating SN levels and mortality in 2 patient cohorts and the functional properties of SN in experimental models. RESULTS In 143 patients hospitalized for acute HF, SN levels were closely associated with mortality (n = 66) during follow-up (median 776 days; hazard ratio [lnSN]: 4.63; 95% confidence interval: 1.93 to 11.11; p = 0.001 in multivariate analysis). SN reclassified patients to their correct risk strata on top of other predictors of mortality. In 155 patients with ventricular arrhythmia-induced cardiac arrest, SN levels were also associated with short-term mortality (n = 51; hazard ratio [lnSN]: 3.33; 95% confidence interval: 1.83 to 6.05; p < 0.001 in multivariate analysis). Perfusing hearts with SN yielded markedly increased myocardial levels and SN internalized into cardiomyocytes by endocytosis. Intracellularly, SN reduced Ca(2+)/calmodulin (CaM)-dependent protein kinase II δ (CaMKIIδ) activity via direct SN-CaM and SN-CaMKII binding and attenuated CaMKIIδ-dependent phosphorylation of the ryanodine receptor. SN also reduced sarcoplasmic reticulum Ca(2+) leak, augmented sarcoplasmic reticulum Ca(2+) content, increased the magnitude and kinetics of cardiomyocyte Ca(2+) transients and contractions, and attenuated Ca(2+) sparks and waves in HF cardiomyocytes. CONCLUSIONS SN provided incremental prognostic information to established risk indices in acute HF and ventricular arrhythmia-induced cardiac arrest.
Immunology and Cell Biology | 2011
Ole J.B. Landsverk; Nicolas Barois; Tone F. Gregers; Oddmund Bakke
Mounting adaptive immune responses requires the cell surface expression of major histocompatibility class II molecules (MHC II) loaded with antigenic peptide. However, in the absence of antigenic stimuli, the surface population of MHC II is highly dynamic and exhibits a high turnover. Several studies have focused on the regulation of MHC II, and it is now recognized that ubiquitination is one key mechanism operating in the turnover of MHC II in B cells and dendritic cells. Here, we describe how the invariant chain (Ii) can prolong the half‐life of MHC II through its action on the endocytic pathway. We find that in cells expressing intermediate‐to‐high levels of Ii, the half‐life of MHC II is increased, with MHC II accumulating in slowly‐maturing endosomes. The accumulation in endosomes is not due to retention of new MHC II directed from the endoplasmatic reticulum, as also mature, not Ii associated, MHC II is preserved. We suggest that this alternative endocytic pathway induced by Ii would serve to enhance the rate, quantity and diversity of MHC II antigen presentation by concentrating MHC II into specialized compartments and reducing the need for new MHC II synthesis upon antigen encounter.
European Journal of Immunology | 2014
Sébastien Wälchli; Shraddha Kumari; Lars Egil Fallang; Kine Marita Knudsen Sand; Weiwen Yang; Ole J.B. Landsverk; Oddmund Bakke; Johanna Olweus; Tone F. Gregers
Protective T‐cell responses depend on efficient presentation of antigen (Ag) in the context of major histocompatibility complex class I (MHCI) and class II (MHCII) molecules. Invariant chain (Ii) serves as a chaperone for MHCII molecules and mediates trafficking to the endosomal pathway. The genetic exchange of the class II‐associated Ii peptide (CLIP) with antigenic peptides has proven efficient for loading of MHCII and activation of specific CD4+ T cells. Here, we investigated if Ii could similarly activate human CD8+ T cells when used as a vehicle for cytotoxic T‐cell (CTL) epitopes. The results show that wild type Ii, and Ii in which CLIP was replaced by known CTL epitopes from the cancer targets MART‐1 or CD20, coprecipitated with HLA‐A*02:01 and mediated colocalization in the endosomal pathway. Furthermore, HLA‐A*02:01‐positive cells expressing CLIP‐replaced Ii efficiently activated Ag‐specific CD8+ T cells in a TAP‐ and proteasome‐independent manner. Finally, dendritic cells transfected with mRNA encoding IiMART‐1 or IiCD20 primed naïve CD8+ T cells. The results show that Ii carrying antigenic peptides in the CLIP region can promote efficient presentation of the epitopes to CTLs independently of the classical MHCI peptide loading machinery, facilitating novel vaccination strategies against cancer.
PLOS ONE | 2016
Martine Schrøder; Guro Reinholt Melum; Ole J.B. Landsverk; Anna Bujko; Sheraz Yaqub; Einar Gran; Henrik Aamodt; Espen S. Baekkevold; Frode L. Jahnsen; Lisa Richter
Conventional dendritic cells (cDCs) comprise a heterogeneous population of cells that are important regulators of immunity and homeostasis. CD1c+ cDCs are present in human blood and tissues, and found to efficiently activate naïve CD4+ T cells. While CD1c is thought to specifically identify this subset of human cDCs, we show here that also classical and intermediate monocytes express CD1c. Accordingly, the commercial CD1c (BDCA-1)+ Dendritic Cell Isolation Kit isolates two distinct cell populations from blood: CD1c+CD14− cDCs and CD1c+CD14+ monocytes. CD1c+ cDCs and CD1c+ monocytes exhibited strikingly different properties, including their differential regulation of surface marker expression, their levels of cytokine production, and their ability to stimulate naïve CD4+ T cells. These results demonstrate that a commercial CD1c (BDCA-1)+ Dendritic Cell Isolation Kit isolates two functionally different cell populations, which has important implications for the interpretation of previously generated data using this kit to characterize CD1c+ cDCs.
Journal of Experimental Medicine | 2018
Anna Bujko; N. Atlasy; Ole J.B. Landsverk; Lisa Richter; Sheraz Yaqub; Rune Horneland; Hendrik G. Stunnenberg; Espen S. Baekkevold; Frode L. Jahnsen
Macrophages (Mfs) are instrumental in maintaining immune homeostasis in the intestine, yet studies on the origin and heterogeneity of human intestinal Mfs are scarce. Here, we identified four distinct Mf subpopulations in human small intestine (SI). Assessment of their turnover in duodenal transplants revealed that all Mf subsets were completely replaced over time; Mf1 and Mf2, phenotypically similar to peripheral blood monocytes (PBMos), were largely replaced within 3 wk, whereas two subsets with features of mature Mfs, Mf3 and Mf4, exhibited significantly slower replacement. Mf3 and Mf4 localized differently in SI; Mf3 formed a dense network in mucosal lamina propria, whereas Mf4 was enriched in submucosa. Transcriptional analysis showed that all Mf subsets were markedly distinct from PBMos and dendritic cells. Compared with PBMos, Mf subpopulations showed reduced responsiveness to proinflammatory stimuli but were proficient at endocytosis of particulate and soluble material. These data provide a comprehensive analysis of human SI Mf population and suggest a precursor-progeny relationship with PBMos.
Frontiers in Immunology | 2016
Aram Nikolai Andersen; Ole J.B. Landsverk; Anne Simonsen; Bjarne Bogen; Alexandre Corthay; Inger Øynebråten
Vaccines aiming to promote T-cell-mediated immune responses have so far showed limited efficacy, and there is a need for novel strategies. Studies indicate that autophagy plays an inherent role in antigen processing and presentation for CD4+ and CD8+ T cells. Here, we report a novel vaccine strategy based on fusion of antigen to the selective autophagy receptor sequestosome 1 (SQSTM1)/p62. We hypothesized that redirection of vaccine antigen from proteasomal degradation into the autophagy pathway would increase the generation of antigen-specific T cells. A hybrid vaccine construct was designed in which the antigen is fused to the C-terminus of p62, a signaling hub, and a receptor that naturally delivers ubiquitinated cargo for autophagic degradation. Fusion of the human immunodeficiency virus-1 antigen Gagp24 to p62 resulted in efficient antigen delivery into the autophagy pathway. Intradermal immunization of mice revealed that, in comparison to Gagp24 delivered alone, fusion to p62 enhanced the number of Gagp24-specific interferon-γ-producing T cells, including CD8+ T cells. The strategy may also have the potential to modulate the antigenic peptide repertoire. Because p62 and autophagy are highly conserved between species, we anticipate this strategy to be a candidate for the development of T-cell-based vaccines in humans.