Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tongbo Wu is active.

Publication


Featured researches published by Tongbo Wu.


Biosensors and Bioelectronics | 2014

Continuous monitoring of bisulfide variation in microdialysis effluents by on-line droplet-based microfluidic fluorescent sensor

Xiaocui Zhu; Lei Xu; Tongbo Wu; Anqin Xu; Meiping Zhao; Shaorong Liu

We demonstrate a novel fluorescent sensor for real-time and continuous monitoring of the variation of bisulfide in microdialysis effluents by using a nanoparticle-glutathione-fluorescein isothiocyanate (AuNP-GSH-FITC) probe coupled with on-line droplet-based microfluidic chip. The AuNP-GSH-FITC fluorescent probe was firstly developed and used for bisulfide detection in bulk solution by quantitative real-time PCR, which achieved a linear working range from 0.1 μM to 5.0 μM and a limit of detection of ~50 nM. The response time was less than 2 min. With the aid of co-immobilized thiol-polyethylene glycol, the probe exhibited excellent stability and reproducibility in high salinity solutions, including artificial cerebrospinal fluids (aCSF). By adding 0.1% glyoxal to the probe solution, the assay allowed quantification of bisulfide in the presence of cysteine at the micro-molarity level. Using the AuNP-GSH-FITC probe, a droplet-based microfluidic fluorescent sensor was further constructed for online monitoring of bisulfide variation in the effluent of microdialysis. By using fluorescence microscope-charge-coupled device camera as the detector, the integrated microdialysis/microfluidic chip device achieved a detection limit of 2.0 μM and a linear response from 5.0 μM to 50 μM for bisulfide in the tested sample. The method was successfully applied for the on-line measurement of bisulfide variation in aCSF and serum samples. It will be a very useful tool for tracking the variation of bisulfide or hydrogen sulfide in extracellular fluids.


Journal of Separation Science | 2012

Rapid and sensitive detection of auxins and flavonoids in plant samples by high-performance liquid chromatography coupled with tandem mass spectrometry

Yuan Liang; Xiaocui Zhu; Tongbo Wu; Meiping Zhao; Huwei Liu

Simultaneous determination of indole-3-acetic acid and methyl indole-3-acetic acid ester in small amounts of plant tissue is essential for elucidating their mutual transformation mechanism and the in vivo function of methyl indole-3-acetic acid ester. Rapid quantification of flavonoids in the same sample is important for clarifying their roles in the transport of auxins and other phytohormones. Herein, we describe a simple method for the simultaneous determination of indole-3-acetic acid and its methyl ester in the roots of the Arabidopsis thaliana seedlings and a protocol for the rapid extraction and quantification of quercetin and kaempferol in these seedlings. High-performance liquid chromatography coupled with electrospray ionization time-of-flight tandem mass spectrometry was used for the detection of all the compounds. Negative data for indole-3-acetic acid and positive data for methyl indole-3-acetic acid ester were collected in two successive files with a single injection of the extracted sample. Under optimized conditions, the limit of detection for the four compounds was 2 ng/mL for indole-3-acetic acid, 0.5 ng/mL for methyl indole-3-acetic acid ester, 5 ng/mL for quercetin, and 1 ng/mL for kaempferol, respectively. Because of the high sensitivity of the assay, only 2-10 mg of the plant material was required to obtain quantitative results.


Nucleic Acids Research | 2017

A branch-migration based fluorescent probe for straightforward, sensitive and specific discrimination of DNA mutations

Xianjin Xiao; Tongbo Wu; Lei Xu; Wei Chen; Meiping Zhao

Abstract Genetic mutations are important biomarkers for cancer diagnostics and surveillance. Preferably, the methods for mutation detection should be straightforward, highly specific and sensitive to low-level mutations within various sequence contexts, fast and applicable at room-temperature. Though some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a branch-migration based fluorescent probe (BM probe) which is able to identify the presence of known or unknown single-base variations at abundances down to 0.3%-1% within 5 min, even in highly GC-rich sequence regions. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 89–311 by measurement of their respective branch-migration products via polymerase elongation reactions. The BM probe not only enabled sensitive detection of two types of EGFR-associated point mutations located in GC-rich regions, but also successfully identified the BRAF V600E mutation in the serum from a thyroid cancer patient which could not be detected by the conventional sequencing method. The new method would be an ideal choice for high-throughput in vitro diagnostics and precise clinical treatment.


Biosensors and Bioelectronics | 2016

A two-layer assay for single-nucleotide variants utilizing strand displacement and selective digestion

Yingjie Yu; Tongbo Wu; Alexander Johnson-Buck; Lidan Li; Xin Su

Point mutations have emerged as prominent biomarkers for disease diagnosis, particularly in the case of cancer. Discovering single-nucleotide variants (SNVs) is also of great importance for the identification of single-nucleotide polymorphisms within the population. The competing requirements of thermodynamic stability and specificity in conventional nucleic acid hybridization probes make it challenging to achieve highly precise detection of point mutants. Here, we present a fluorescence-based assay for low-abundance mutation detection based on toehold-mediated strand displacement and nuclease-mediated strand digestion that enables highly precise detection of point mutations. We demonstrate that this combined assay provides 50-1000-fold discrimination (mean value: 255) between all possible single-nucleotide mutations and their corresponding wild-type sequence for a model DNA target. Using experiments and kinetic modeling, we investigate probe properties that obtain additive benefits from both strand displacement and nucleolytic digestion, thus providing guidance for the design of enzyme-mediated nucleic acid assays in the future.


Analytical and Bioanalytical Chemistry | 2013

New advances in molecular recognition based on biomolecular scaffolds.

Meiping Zhao; Tongbo Wu; Xianjin Xiao; Yang Liu; Xin Su

In this review, we summarize recent advances in the development of molecular recognition components based on the biomolecular scaffolds of proteins and nucleic acids for specific recognition of miscellaneous targets. In addition to the widely adopted recombinant antibody fragments, designed ankyrin repeat proteins and modular peptide repeats of transcription-activator-like effectors for base-specific recognition of DNA sequence are also briefly introduced. For the nucleic acid based molecular recognition systems, aptamers, including slow off-rate modified aptamers, DNAzymes, and synthetic DNA-like oligomers for versatile biorecognition are described. Finally, we discuss the remaining challenges and future research directions in the field.


Nucleic Acids Research | 2018

Noncanonical substrate preference of lambda exonuclease for 5′-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction

Tongbo Wu; Yufei Yang; Wei Chen; Jiayu Wang; Ziyu Yang; Shenlin Wang; Xianjin Xiao; Mengyuan Li; Meiping Zhao

Abstract Lambda exonuclease (λ exo) plays an important role in the resection of DNA ends for DNA repair. Currently, it is also a widely used enzymatic tool in genetic engineering, DNA-binding protein mapping, nanopore sequencing and biosensing. Herein, we disclose two noncanonical properties of this enzyme and suggest a previously undescribed hydrophobic interaction model between λ exo and DNA substrates. We demonstrate that the length of the free portion of the substrate strand in the dsDNA plays an essential role in the initiation of digestion reactions by λ exo. A dsDNA with a 5′ non-phosphorylated, two-nucleotide-protruding end can be digested by λ exo with very high efficiency. Moreover, we show that when a conjugated structure is covalently attached to an internal base of the dsDNA, the presence of a single mismatched base pair at the 5′ side of the modified base may significantly accelerate the process of digestion by λ exo. A detailed comparison study revealed additional π–π stacking interactions between the attached label and the amino acid residues of the enzyme. These new findings not only broaden our knowledge of the enzyme but will also be very useful for research on DNA repair and in vitro processing of nucleic acids.


Nucleic Acids Research | 2018

DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations in circulating cell-free DNA

Tongbo Wu; Wei Chen; Ziyu Yang; Haocheng Tan; Jiayu Wang; Xianjin Xiao; Mengyuan Li; Meiping Zhao

Abstract Sensitive detection of the single nucleotide variants in cell-free DNA (cfDNA) may provide great opportunity for minimally invasive diagnosis and prognosis of cancer and other related diseases. Here, we demonstrate a facile new strategy for quantitative measurement of cfDNA mutations at low abundance in the cancer patients’ plasma samples. The method takes advantage of a novel property of lambda exonuclease which effectively digests a 5′-fluorophore modified dsDNA with a 2-nt overhang structure and sensitively responds to the presence of mismatched base pairs in the duplex. It achieves a limit of detection as low as 0.02% (percentage of the mutant type) for BRAFV600E mutation, NRASQ61R mutation and three types of EGFR mutations (G719S, T790M and L858R). The method enabled identification of BRAFV600E and EGFRL858R mutations in the plasma of different cancer patients within only 3.5 h. Moreover, the terminal structure-dependent reaction greatly simplifies the probe design and reduces the cost, and the assay only requires a regular real-time PCR machine. This new method may serve as a practical tool for quantitative measurement of low-abundance mutations in clinical samples for providing genetic mutation information with prognostic or therapeutic implications.


Biosensors and Bioelectronics | 2018

Target-triggered transcription machinery for ultra-selective and sensitive fluorescence detection of nucleoside triphosphates in one minute

Jiantong Dong; Tongbo Wu; Yu Xiao; Lu Chen; Lei Xu; Mengyuan Li; Meiping Zhao

Nucleoside triphosphates (NTPs) play important roles in living organisms. However, no fluorescent assays are currently available to simply and rapidly detect multiple NTPs with satisfactory selectivity, sensitivity and low cost. Here we demonstrate for the first time a target-triggered in-vitro transcription machinery for ultra-selective, sensitive and instant fluorescence detection of multiple NTPs. The machinery assembles RNA polymerase, DNA template and non-target NTPs to convert the target NTP into equivalent RNA signal sequences which are monitored by the fluorescence enhancement of molecular beacon. The machinery offers excellent selectivity for the target NTP against NDP, NMP and dNTP. Notably, to accelerate the kinetics of the machinery while maintain its high specificity, we investigated the sequence of DNA templates systematically and established a set of guidelines for the design of the optimum DNA templates, which allowed for instant detection of the target NTP at fmol level in less than 1min. Furthermore, the machinery could be transformed into logic gates to study the coeffects of two NTPs in biosynthesis and real-time monitoring systems to reflect the distribution of NTP in nucleotide pools. These results provide very useful and low-cost tools for both biochemical tests and point-of-care analysis.


Chemical Communications | 2016

A fuel-limited isothermal DNA machine for the sensitive detection of cellular deoxyribonucleoside triphosphates

Jiantong Dong; Tongbo Wu; Yu Xiao; Lei Xu; Simin Fang; Meiping Zhao

A fuel-limited isothermal DNA machine has been built for the sensitive fluorescence detection of cellular deoxyribonucleoside triphosphates (dNTPs) at the fmol level, which greatly reduces the required sample cell number. Upon the input of the limiting target dNTP, the machine runs automatically at 37 °C without the need for higher temperature.


Chemical Science | 2015

Enzyme-mediated single-nucleotide variation detection at room temperature with high discrimination factor†

Tongbo Wu; Xianjin Xiao; Zhe Zhang; Meiping Zhao

Collaboration


Dive into the Tongbo Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xianjin Xiao

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Chen

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge