Tonmoy Ghosh
Central Salt and Marine Chemicals Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tonmoy Ghosh.
Bioresource Technology | 2014
Imran Pancha; Kaumeel Chokshi; Basil George; Tonmoy Ghosh; Chetan Paliwal; Rahulkumar Maurya; Sandhya Mishra
The aim of present study was to investigate the effects of nitrogen limitation as well as sequential nitrogen starvation on morphological and biochemical changes in Scenedesmus sp. CCNM 1077. The results revealed that the nitrogen limitation and sequential nitrogen starvation conditions significantly decreases the photosynthetic activity as well as crude protein content in the organism, while dry cell weight and biomass productivity are largely unaffected up to nitrate concentration of about 30.87mg/L and 3 days nitrate limitation condition. Nitrate stress was found to have a significant effect on cell morphology of Scenedesmus sp. CCNM 1077. Total removal of nitrate from the growth medium resulted in highest lipid (27.93%) and carbohydrate content (45.74%), making it a potential feed stock for biodiesel and bio-ethanol production. This is a unique approach to understand morphological and biochemical changes in freshwater microalgae under nitrate limitation as well as sequential nitrate removal conditions.
Phytochemistry | 2013
Abhishek Sahu; Imran Pancha; Deepti Jain; Chetan Paliwal; Tonmoy Ghosh; Shailesh Kumar Patidar; Sourish Bhattacharya; Sandhya Mishra
Microalgae are primary producers of the food chain and hold prominence towards pharmaceutical and nutraceutical applications. Fatty acids (FAs) are one of the primary metabolites of microalgae, which enrich their utility both in the form of food and fuels. Additionally, the vast structural diversity coupled with taxonomic specificity makes these FAs as potential biomarkers. The determination of lipid and fatty acid profiling of 12 different strains of microalgae has been accomplished in this study and further discussed in respect to their chemotaxonomic perspective in microalgae. Palmitic acid (C16:0) and oleic acid (C18:1n9c) were found to be dominant among the members of Cyanophyceae whereas members of Chlorophyceae were rich in palmitic acid (C16:0), oleic acid (C18:1n9c) and linoleic acid (C18:2n6). The application of principal component analysis (PCA) and algorithmic hierarchical clustering (AHC) resulted in the segregation of the studied microalgal strains into 8 different orders belonging to 2 distinct phyla according to their phylogenetic classification. Nutritionally important FAs like eicosapentaenoic acid (EPA, C20:5n3) and docosahexaenoic acid (DHA, C22:6n3) were detected only in Chlorella sp. belonging to Chlorophyceaen family. Differential segregation of microalgae with respect to their fatty acid profile indicated the potential utility of FAs as biomarkers.
Bioresource Technology | 2014
Basil George; Imran Pancha; Chahana Desai; Kaumeel Chokshi; Chetan Paliwal; Tonmoy Ghosh; Sandhya Mishra
Media composition, light intensity and photoperiod significantly affect the algal growth and productivity and their optimization is important for the commercialization of microalgae based biofuels. In the present study, effects of different culture medium, light intensity and photoperiod were studied on growth, biomass productivity, and biochemical composition of a fresh water microalgae Ankistrodesmus falcatus in batch culture. The results revealed that A. falcatus could yield more than 35% of total lipid (containing around 65.74% neutral lipid) along with optimal growth (0.20 μ) and biomass productivity (7.9 mg/L/day) in the BG-11 medium under a light intensity of 60 μmol m(-2) s(-1) and 12:12 (Light: Dark) cycle. The highest total lipid yield of 67.2% (containing 72.68% of neutral lipid) was observed in Zarrouks medium grown culture but with altered cell morphology and ultra-structural changes.
Bioresource Technology | 2015
Imran Pancha; Kaumeel Chokshi; Tonmoy Ghosh; Chetan Paliwal; Rahulkumar Maurya; Sandhya Mishra
The aim of the present study was to find out the optimum sodium bicarbonate concentration to produce higher biomass with higher lipid and carbohydrate contents in microalgae Scenedesmus sp. CCNM 1077. The role of bicarbonate supplementation under different nutritional starvation conditions was also evaluated. The results clearly indicate that 0.6 g/L sodium bicarbonate was optimum concentration resulting in 20.91% total lipid and 25.56% carbohydrate along with 23% increase in biomass production compared to normal growth condition. Addition of sodium bicarbonate increased the activity of nutrient assimilatory enzymes, biomass, lipid and carbohydrate contents under different nutritional starvation conditions. Nitrogen starvation with bicarbonate supplementation resulted in 54.03% carbohydrate and 34.44% total lipid content in microalgae Scenedesmus sp. CCNM 1077. These findings show application of bicarbonate grown microalgae Scenedesmus sp. CCNM 1077 as a promising feedstock for biodiesel and bioethanol production.
PLOS ONE | 2014
Rahulkumar Maurya; Tonmoy Ghosh; Chetan Paliwal; Anupama Shrivastav; Kaumeel Chokshi; Imran Pancha; Arup Ghosh; Sandhya Mishra
The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2–9), temperature (293.16–323.16 K), biosorbent dosage (1–10 g L−1), contact time (0–1,440 min), agitation speed (0–150 rpm) and dye concentration (25–2,500 mg L−1). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5–7 g L−1 DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g−1 at 2,000 mg L−1 initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g−1 in preliminary study while it went up to 139.11 mg g−1 in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB.
Bioresource Technology | 2016
Rahulkumar Maurya; Chetan Paliwal; Tonmoy Ghosh; Imran Pancha; Kaumeel Chokshi; Madhusree Mitra; Arup Ghosh; Sandhya Mishra
In view of commercialization of microalgal biofuel, the de-oiled microalgal biomass (DMB) is a surplus by-product in the biorefinery process that needs to be exploited to make the process economically attractive and feasible. This DMB, rich in carbohydrates, proteins, and minerals, can be used as feed, fertilizer, and substrate for the production of bioethanol/bio-methane. Further, thermo-chemical conversion of DMB results into fuels and industrially important chemicals. Future prospects of DMB also lie with its conversion into novel biomaterials like nanoparticles and carbon-dot which have biomedical importance. The lowest valued application of DMB is to use it for adsorption of dyes and heavy metals from industrial effluents. This study reviews how DMB can be utilized for different applications and in the generation of valuable co-products. The value addition of DMB would thereby improve the overall cost economics of the microalgal bio-refinery.
Bioresource Technology | 2017
Chetan Paliwal; Madhusree Mitra; Khushbu Bhayani; S.V. Vamsi Bharadwaj; Tonmoy Ghosh; Sonam Dubey; Sandhya Mishra
Microalgae, due to various environmental stresses, constantly tune their cellular mechanisms to cope with them. The accumulation of the stress metabolites is closely related to the changes occurring in their metabolic pathways. The biosynthesis of metabolites can be triggered by a number of abiotic stresses like temperature, salinity, UV- radiation and nutrient deprivation. Although, microalgae have been considered as an alternative sustainable source for nutraceutical products like pigments and omega-3 polyunsaturated fatty acids (PUFAs) to cater the requirement of emerging human population but inadequate biomass generation makes the process economically impractical. The stress metabolism for carotenoid regulation in green algae is a 2-step metabolism. There are a few major stresses which can influence the formation of phycobiliprotein in cyanobacteria. This review would primarily focus on the cellular level changes under stress conditions and their corresponding effects on lipids (including omega-3 PUFAs), pigments and polymers.
Bioresource Technology | 2015
Chetan Paliwal; Imran Pancha; Tonmoy Ghosh; Rahulkumar Maurya; Kaumeel Chokshi; S.V. Vamsi Bharadwaj; Shristi Ram; Sandhya Mishra
Nutrients are the deciding factors in the biological production of bioactive compounds. Various growth media like BG11, Zarrouks and Chus 10 were studied for carotenoid production in Synechocystis sp. CCNM 2501. Maximum carotenoid content (dry weight basis) was found in Zarrouks medium (ZM, 7.99mgg(-1)) followed by BG11 (5.13mgg(-1)). Echinenone content was 4 times higher in ZM (3.81mgg(-1)) as compared to BG11 (0.95mgg(-1)) and Chus 10 (0.77mgg(-1)). Being an economical medium, BG11 was selected for carotenoid production. Further, increase in salinity from 0 to 0.2M in BG11 medium increases total carotenoid content from 5.82 to 7.05mgg(-1) and later it declines to 6.23mgg(-1) (1M). 3 times more β-carotene is produced at 1M salinity as compared to control BG11. The variation in carotenoid composition with change in nutrients/salinity can be a good strategy to enhance certain targeted carotenoids.
RSC Advances | 2016
Kaumeel Chokshi; Imran Pancha; Tonmoy Ghosh; Chetan Paliwal; Rahulkumar Maurya; Arup Ghosh; Sandhya Mishra
Metal nanoparticles have received global attention due to their widespread biomedical applications. This study demonstrates a sustainable approach for the biogenic synthesis of silver nanoparticles using lipid extracted residual biomass of microalgae Acutodesmus dimorphus cultivated in dairy wastewater. A. dimorphus is a thermotolerant green microalgae with biofuel production potential. The residual biomass of A. dimorphus left after lipid extraction was used to prepare microalgal water extract which was further used for the synthesis of silver nanoparticles. Characterization of the biosynthesized silver nanoparticles using ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the formation of polydispersed, spherical shaped silver nanoparticles with 2–20 nm size. To our best knowledge, this is the first report on the biosynthesis of nanoparticles using de-oiled biomass of microalgae. Further, the biosynthesized silver nanoparticles exhibited an antioxidant potential which was evaluated using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) i.e. ABTS and 1,1-diphenyl-2-picrylhydrazyl i.e. DPPH, free radical scavenging assays. As microalgae are widely distributed in diverse habitats, they exhibit wide potential for the green synthesis of metallic nanoparticles. Such integration of phycology and nanotechnology leads to the development of a new interdisciplinary approach, ‘phyconanotechnology’.
Frontiers in Plant Science | 2016
Rahulkumar Maurya; Kaumeel Chokshi; Tonmoy Ghosh; Khanjan Trivedi; Imran Pancha; Denish Kubavat; Sandhya Mishra; Arup Ghosh
High volumes of lipid extracted microalgal biomass residues (LMBRs) are expected to be produced upon commencement of biodiesel production on a large scale, thus necessitating its value addition for sustainable development. LMBRs of Chlorella variabilis and Lyngbya majuscula were employed to substitute the nitrogen content of recommended rate of fertilizer (RRF) for Zea mays L. The pot experiment comprised of 10 treatments, i.e., T1 (No fertilizer); T2 (RRF-120 N: 60 P2O5: 40 K2O kg ha−1); T3 to T6—100, 75, 50, and 25% N through LMBR of the Chlorella sp., respectively; T7 to T10—100, 75, 50, and 25% N through LMBR of Lyngbya sp., respectively. It was found that all LMBR substitution treatments were at par to RRF with respect to grain yield production. T10 gave the highest grain yield (65.16 g plant−1), which was closely followed by that (63.48 g plant−1) under T5. T10 also recorded the highest phosphorus and potassium contents in grains. T4 was markedly superior over control in terms of dry matter accumulation (DMA) as well as carbohydrate content, which was ascribed to higher pigment content and photosynthetic activity in leaves. Even though considerably lower DMA was obtained in Lyngbya treatments, which might have been due to the presence of some toxic factors, no reduction in grain yield was apparent. The length of the tassel was significantly higher in either of the LMBRs at any substitution rates over RRF, except T6 and T7. The ascorbate peroxidase activity decreased with decreasing dose of Chlorella LMBR, while all the Lyngbya LMBR treatments recorded lower activity, which were at par with each other. Among the Chlorella treatments, only T5 recorded significantly higher values of glutathione reductase activity over RRF, while the rest were at par. There were significant increases in carbohydrate and crude fat, respectively, only in T4 and T3 over RRF, while no change was observed in crude protein due to LMBR treatments. Apparently, there was no detrimental effect on soil properties, suggesting that both the LMBRs can be employed to reduce the usage of chemical fertilizers, thus promoting maize crop production in a sustainable manner.