Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony Kouzarides is active.

Publication


Featured researches published by Tony Kouzarides.


Cell | 2007

Chromatin modifications and their function.

Tony Kouzarides

The surface of nucleosomes is studded with a multiplicity of modifications. At least eight different classes have been characterized to date and many different sites have been identified for each class. Operationally, modifications function either by disrupting chromatin contacts or by affecting the recruitment of nonhistone proteins to chromatin. Their presence on histones can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA. In this way, histone modifications have the potential to influence many fundamental biological processes, some of which may be epigenetically inherited.


Nature | 2001

Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain

Andrew J. Bannister; Philip Zegerman; Janet F. Partridge; Eric A. Miska; Jean O. Thomas; Robin C. Allshire; Tony Kouzarides

Heterochromatin protein 1 (HP1) is localized at heterochromatin sites where it mediates gene silencing. The chromo domain of HP1 is necessary for both targeting and transcriptional repression. In the fission yeast Schizosaccharomyces pombe, the correct localization of Swi6 (the HP1 equivalent) depends on Clr4, a homologue of the mammalian SUV39H1 histone methylase. Both Clr4 and SUV39H1 methylate specifically lysine 9 of histone H3 (ref. 6). Here we show that HP1 can bind with high affinity to histone H3 methylated at lysine 9 but not at lysine 4. The chromo domain of HP1 is identified as its methyl-lysine-binding domain. A point mutation in the chromo domain, which destroys the gene silencing activity of HP1 in Drosophila, abolishes methyl-lysine-binding activity. Genetic and biochemical analysis in S. pombe shows that the methylase activity of Clr4 is necessary for the correct localization of Swi6 at centromeric heterochromatin and for gene silencing. These results provide a stepwise model for the formation of a transcriptionally silent heterochromatin: SUV39H1 places a ‘methyl marker’ on histone H3, which is then recognized by HP1 through its chromo domain. This model may also explain the stable inheritance of the heterochromatic state.


Cell Research | 2011

Regulation of chromatin by histone modifications

Andrew J. Bannister; Tony Kouzarides

Chromatin is not an inert structure, but rather an instructive DNA scaffold that can respond to external cues to regulate the many uses of DNA. A principle component of chromatin that plays a key role in this regulation is the modification of histones. There is an ever-growing list of these modifications and the complexity of their action is only just beginning to be understood. However, it is clear that histone modifications play fundamental roles in most biological processes that are involved in the manipulation and expression of DNA. Here, we describe the known histone modifications, define where they are found genomically and discuss some of their functional consequences, concentrating mostly on transcription where the majority of characterisation has taken place.


Nature | 2002

Active genes are tri-methylated at K4 of histone H3

Helena Santos-Rosa; Robert Schneider; Andrew J. Bannister; Julia Sherriff; Bradley E. Bernstein; N. C. Tolga Emre; Stuart L. Schreiber; Jane Mellor; Tony Kouzarides

Lysine methylation of histones in vivo occurs in three states: mono-, di- and tri-methyl. Histone H3 has been found to be di-methylated at lysine 4 (K4) in active euchromatic regions but not in silent heterochromatic sites. Here we show that the Saccharomyces cerevisiae Set1 protein can catalyse di- and tri-methylation of K4 and stimulate the activity of many genes. Using antibodies that discriminate between the di- and tri-methylated state of K4 we show that di-methylation occurs at both inactive and active euchromatic genes, whereas tri-methylation is present exclusively at active genes. It is therefore the presence of a tri-methylated K4 that defines an active state of gene expression. These findings establish the concept of methyl status as a determinant for gene activity and thus extend considerably the complexity of histone modifications.


Cell | 2012

Cancer Epigenetics: From Mechanism to Therapy

Mark A. Dawson; Tony Kouzarides

The epigenetic regulation of DNA-templated processes has been intensely studied over the last 15 years. DNA methylation, histone modification, nucleosome remodeling, and RNA-mediated targeting regulate many biological processes that are fundamental to the genesis of cancer. Here, we present the basic principles behind these epigenetic pathways and highlight the evidence suggesting that their misregulation can culminate in cancer. This information, along with the promising clinical and preclinical results seen with epigenetic drugs against chromatin regulators, signifies that it is time to embrace the central role of epigenetics in cancer.


Nature | 1998

Retinoblastoma protein recruits histone deacetylase to repress transcription

Alexander Brehm; Eric A. Miska; Dennis J.McCance; Juliet L. Reid; Andrew J. Bannister; Tony Kouzarides

The retinoblastoma protein (Rb) silences specific genes that are active in the S phase of the cell cycle and which are regulated by E2F transcription factors. Rb binds to the activation domain of E2F and then actively represses the promoter by a mechanism that is poorly understood,. Here we show that Rb associates with a histone deacetylase, HDAC1, through the Rb ‘pocket’ domain. Association with the deacetylase is reduced by naturally occurring mutations in the pocket and by binding of the human papilloma virus oncoprotein E7. We find that Rb can recruit histone deacetylase to E2F and that Rb cooperates with HDAC1 to repress the E2F-regulated promoter of the gene encoding the cell-cycle protein cyclin E. Inhibition of histone deacetylase activity by trichostatin A (TSA) inhibits Rb-mediated repression of a chromosomally integrated E2F-regulated promoter. Our results indicate that histone deacetylases are important for regulating the cell cycle and that active transcriptional repression by Rb may involve the modification of chromatin structure.


The EMBO Journal | 2000

Acetylation: a regulatory modification to rival phosphorylation?

Tony Kouzarides

The fact that histones are modified by acetylation has been known for almost 30 years. The recent identification of enzymes that regulate histone acetylation has revealed a broader use of this modification than was suspected previously. Acetylases are now known to modify a variety of proteins, including transcription factors, nuclear import factors and α‐tubulin. Acetylation regulates many diverse functions, including DNA recognition, protein–protein interaction and protein stability. There is even a conserved structure, the bromodomain, that recognizes acetylated residues and may serve as a signalling domain. If you think all this sounds familiar, it should be. These are features characteristic of kinases. So, is acetylation a modification analogous to phosphorylation? This review sets out what we know about the broader substrate specificity and regulation of acetylases and goes on to compare acetylation with the process of phosphorylation.


Nature | 2011

Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia

Mark A. Dawson; Rab K. Prinjha; Antje Dittmann; George Giotopoulos; Marcus Bantscheff; Wai-In Chan; Samuel Robson; Chun-wa Chung; Carsten Hopf; Mikhail M. Savitski; Carola Huthmacher; Emma Gudgin; Dave Lugo; Soren Beinke; Trevor D. Chapman; Emma J. Roberts; Peter E. Soden; Kurt R. Auger; Olivier Mirguet; Konstanze Doehner; Ruud Delwel; Alan Kenneth Burnett; Phillip Jeffrey; Gerard Drewes; Kevin Lee; Brian J. P. Huntly; Tony Kouzarides

Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which are often refractory to conventional therapies. Many MLL-fusion partners are members of the super elongation complex (SEC), a critical regulator of transcriptional elongation, suggesting that aberrant control of this process has an important role in leukaemia induction. Here we use a global proteomic strategy to demonstrate that MLL fusions, as part of SEC and the polymerase-associated factor complex (PAFc), are associated with the BET family of acetyl-lysine recognizing, chromatin ‘adaptor’ proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. We show that a novel small molecule inhibitor of the BET family, GSK1210151A (I-BET151), has profound efficacy against human and murine MLL-fusion leukaemic cell lines, through the induction of early cell cycle arrest and apoptosis. I-BET151 treatment in two human leukaemia cell lines with different MLL fusions alters the expression of a common set of genes whose function may account for these phenotypic changes. The mode of action of I-BET151 is, at least in part, due to the inhibition of transcription at key genes (BCL2, C-MYC and CDK6) through the displacement of BRD3/4, PAFc and SEC components from chromatin. In vivo studies indicate that I-BET151 has significant therapeutic value, providing survival benefit in two distinct mouse models of murine MLL–AF9 and human MLL–AF4 leukaemia. Finally, the efficacy of I-BET151 against human leukaemia stem cells is demonstrated, providing further evidence of its potent therapeutic potential. These findings establish the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.


Nature Genetics | 2000

DNA methyltransferase Dnmt1 associates with histone deacetylase activity

François Fuks; Wendy A. Burgers; Alexander Brehm; Luke Hughes-Davies; Tony Kouzarides

The DNA methyltransferase Dnmt1 is responsible for cytosine methylation in mammals and has a role in gene silencing. DNA methylation represses genes partly by recruitment of the methyl-CpG-binding protein MeCP2, which in turn recruits a histone deacetylase activity. Here we show that Dnmt1 is itself associated with histone deacetylase activity in vivo. Consistent with this association, we find that one of the known histone deacetylases, HDAC1, has the ability to bind Dnmt1 and can purify methyltransferase activity from nuclear extracts. We have identified a transcriptional repression domain in Dnmt1 that functions, at least partly, by recruiting histone deacetylase activity and shows homology to the repressor domain of the trithorax-related protein HRX (also known as MLL and ALL-1). Our data show a more direct connection between DNA methylation and histone deacetylation than was previously considered. We suggest that the process of DNA methylation, mediated by Dnmt1, may depend on or generate an altered chromatin state via histone deacetylase activity.


Nature | 2001

Rb targets histone H3 methylation and HP1 to promoters

Søren J. Nielsen; Robert Schneider; Uta-Maria Bauer; Andrew J. Bannister; Ashby J. Morrison; Dónal O'Carroll; Ron Firestein; Michael L. Cleary; Thomas Jenuwein; Rafael E. Herrera; Tony Kouzarides

In eukaryotic cells the histone methylase SUV39H1 and the methyl-lysine binding protein HP1 functionally interact to repress transcription at heterochromatic sites. Lysine 9 of histone H3 is methylated by SUV39H1 (ref. 2), creating a binding site for the chromo domain of HP1 (refs 3, 4). Here we show that SUV39H1 and HP1 are both involved in the repressive functions of the retinoblastoma (Rb) protein. Rb associates with SUV39H1 and HP1 in vivo by means of its pocket domain. SUV39H1 cooperates with Rb to repress the cyclin E promoter, and in fibroblasts that are disrupted for SUV39, the activity of the cyclin E and cyclin A2 genes are specifically elevated. Chromatin immunoprecipitations show that Rb is necessary to direct methylation of histone H3, and is necessary for binding of HP1 to the cyclin E promoter. These results indicate that the SUV39H1–HP1 complex is not only involved in heterochromatic silencing but also has a role in repression of euchromatic genes by Rb and perhaps other co-repressor proteins.

Collaboration


Dive into the Tony Kouzarides's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena Santos-Rosa

Wellcome Trust/Cancer Research UK Gurdon Institute

View shared research outputs
Top Co-Authors

Avatar

Mark A. Dawson

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Fuks

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Luke Hughes-Davies

Cambridge University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge