Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony Low is active.

Publication


Featured researches published by Tony Low.


ACS Nano | 2014

Graphene Plasmonics for Terahertz to Mid-Infrared Applications

Tony Low; Phaedon Avouris

In recent years, we have seen a rapid progress in the field of graphene plasmonics, motivated by graphenes unique electrical and optical properties, tunability, long-lived collective excitation and its extreme light confinement. Here, we review the basic properties of graphene plasmons: their energy dispersion, localization and propagation, plasmon-phonon hybridization, lifetimes and damping pathways. The application space of graphene plasmonics lies in the technologically significant, but relatively unexploited terahertz to mid-infrared regime. We discuss emerging and potential applications, such as modulators, notch filters, polarizers, mid-infrared photodetectors, and mid-infrared vibrational spectroscopy, among many others.


Nature Photonics | 2013

Damping pathways of mid-infrared plasmons in graphene nanostructures

Hugen Yan; Tony Low; Wenjuan Zhu; Yanqing Wu; Marcus Freitag; Xuesong Li; F. Guinea; Phaedon Avouris; Fengnian Xia

Mid-infrared plasmons in scaled graphene nanostructures Hugen Yan*, Tony Low, Wenjuan Zhu, Yanqing Wu, Marcus Freitag, Xuesong Li, Francisco Guinea, Phaedon Avouris* and Fengnian Xia* IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 Instituto de Ciencia de Materiales de Madrid. CSIC. Sor Juana Inés de la Cruz 3. 28049 Madrid, Spain Plasmonics takes advantage of the collective response of electrons to electromagnetic waves, enabling dramatic scaling of optical devices beyond the diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 μm) plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100 times smaller than the onresonance light wavelength in free space. We reveal, for the first time, the crucial damping channels of graphene plasmons via its intrinsic optical phonons and scattering from the edges. A plasmon lifetime of 20 femto-seconds and smaller is observed, when damping through the emission of an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2 substrate underneath the graphene nanostructures lead to a significantly modified plasmon dispersion and damping, in contrast to a non-polar diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the plasmon resonance frequencies are close to the polar phonon frequencies. Our study paves the way for applications of graphene in plasmonic waveguides, modulators and detectors in an unprecedentedly broad wavelength range from sub-terahertz to mid-infrared.


Nature Nanotechnology | 2015

Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform

Xu Cui; Gwan Hyoung Lee; Young Duck Kim; Ghidewon Arefe; Pinshane Y. Huang; Chulho Lee; Daniel Chenet; Xiangwei Zhang; Lei Wang; Fan Ye; Filippo Pizzocchero; Bjarke Sørensen Jessen; Kenji Watanabe; Takashi Taniguchi; David A. Muller; Tony Low; Philip Kim; James Hone

Atomically thin two-dimensional semiconductors such as MoS2 hold great promise for electrical, optical and mechanical devices and display novel physical phenomena. However, the electron mobility of mono- and few-layer MoS2 has so far been substantially below theoretically predicted limits, which has hampered efforts to observe its intrinsic quantum transport behaviours. Potential sources of disorder and scattering include defects such as sulphur vacancies in the MoS2 itself as well as extrinsic sources such as charged impurities and remote optical phonons from oxide dielectrics. To reduce extrinsic scattering, we have developed here a van der Waals heterostructure device platform where MoS2 layers are fully encapsulated within hexagonal boron nitride and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. Magneto-transport measurements show dramatic improvements in performance, including a record-high Hall mobility reaching 34,000 cm(2) V(-1) s(-1) for six-layer MoS2 at low temperature, confirming that low-temperature performance in previous studies was limited by extrinsic interfacial impurities rather than bulk defects in the MoS2. We also observed Shubnikov-de Haas oscillations in high-mobility monolayer and few-layer MoS2. Modelling of potential scattering sources and quantum lifetime analysis indicate that a combination of short-range and long-range interfacial scattering limits the low-temperature mobility of MoS2.


Nature Photonics | 2013

Photoconductivity of biased graphene

Marcus Freitag; Tony Low; Fengnian Xia; Phaedon Avouris

Scientists report that the photovoltaic effect and a photo-induced bolometric effect, rather than thermoelectric effects, dominate the photoresponse during a classic photoconductivity experiment in biased graphene. The findings shed light on the hot-electron-driven photoresponse in graphene and its energy loss pathway via phonons.


Nature Communications | 2014

Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition.

Wenjuan Zhu; Tony Low; Yi Hsien Lee; Han Wang; Damon B. Farmer; Jing Kong; Fengnian Xia; Phaedon Avouris

Layered transition metal dichalcogenides display a wide range of attractive physical and chemical properties and are potentially important for various device applications. Here we report the electronic transport and device properties of monolayer molybdenum disulphide grown by chemical vapour deposition. We show that these devices have the potential to suppress short channel effects and have high critical breakdown electric field. However, our study reveals that the electronic properties of these devices are at present severely limited by the presence of a significant amount of band tail trapping states. Through capacitance and ac conductance measurements, we systematically quantify the density-of-states and response time of these states. Because of the large amount of trapped charges, the measured effective mobility also leads to a large underestimation of the true band mobility and the potential of the material. Continual engineering efforts on improving the sample quality are needed for its potential applications.


Physical Review B | 2014

Tunable optical properties of multilayer black phosphorus thin films

Tony Low; A. S. Rodin; A. Carvalho; Yongjin Jiang; Han Wang; Fengnian Xia; A. H. Castro Neto

Black phosphorus thin films might offer attractive alternatives to narrow gap compound semiconductors for optoelectronics across mid- to near-infrared frequencies. In this work, we calculate the optical conductivity tensor of multilayer black phosphorus thin films using the Kubo formula within an effective low-energy Hamiltonian. The optical absorption spectra of multilayer black phosphorus are shown to vary sensitively with thickness, doping, and light polarization. In conjunction with experimental spectra obtained from infrared absorption spectroscopy, we also discuss the role of interband coupling and disorder on the observed anisotropic absorption spectra.


Physical Review Letters | 2014

Plasmons and Screening in Monolayer and Multilayer Black Phosphorus

Tony Low; Rafael Roldán; Han Wang; Fengnian Xia; Phaedon Avouris; Luis Moreno; F. Guinea

Black phosphorus exhibits a high degree of band anisotropy. However, we find that its in-plane static screening remains relatively isotropic for momenta relevant to elastic long-range scattering processes. On the other hand, the collective electronic excitations in the system exhibit a strong anisotropy. Band nonparabolicity, due to interband couplings, leads to a plasmon frequency which scales as nβ, where n is the carrier concentration, and β<1/2. Screening and charge distribution in the out-of-plane direction are also studied using a nonlinear Thomas-Fermi model.


Nature Materials | 2017

Polaritons in layered two-dimensional materials

Tony Low; Andrey Chaves; Joshua D. Caldwell; Anshuman Kumar; Nicholas X. Fang; Phaedon Avouris; Tony F. Heinz; F. Guinea; Luis Martín-Moreno

In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.


Nature Communications | 2013

Photocurrent in graphene harnessed by tunable intrinsic plasmons

Marcus Freitag; Tony Low; Wenjuan Zhu; Hugen Yan; Fengnian Xia; Phaedon Avouris

Graphenes optical properties in the infrared and terahertz can be tailored and enhanced by patterning graphene into periodic metamaterials with sub-wavelength feature sizes. Here we demonstrate polarization-sensitive and gate-tunable photodetection in graphene nanoribbon arrays. The long-lived hybrid plasmon-phonon modes utilized are coupled excitations of electron density oscillations and substrate (SiO2) surface polar phonons. Their excitation by s-polarization leads to an in-resonance photocurrent, an order of magnitude larger than the photocurrent observed for p-polarization, which excites electron-hole pairs. The plasmonic detectors exhibit photo-induced temperature increases up to four times as large as comparable two-dimensional graphene detectors. Moreover, the photocurrent sign becomes polarization sensitive in the narrowest nanoribbon arrays owing to differences in decay channels for photoexcited hybrid plasmon-phonons and electrons. Our work provides a path to light-sensitive and frequency-selective photodetectors based on graphenes plasmonic excitations.


Nature Nanotechnology | 2011

Gate-controlled guiding of electrons in graphene

James R. Williams; Tony Low; Mark Lundstrom; C. M. Marcus

Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronic systems, including the magnetic focusing and electrostatic lensing of electrons. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogues of optical devices with both positive and negative indices of refraction. Here, we use the gate-controlled density of both p and n carrier types in graphene to demonstrate the electronic analogue of fibre-optic guiding. Two basic effects are investigated: bipolar p-n junction guiding, based on the principle of angle-selective transmission through the interface between the graphene and the p-n junction; and unipolar fibre-optic guiding, using total internal reflection controlled by carrier density. We also demonstrate modulation of the guiding efficiency through gating, and comparison of these data with numerical simulations indicates that guiding performance is limited by the roughness of the interface. The development of p-n and fibre-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices.

Collaboration


Dive into the Tony Low's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Guinea

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei Nemilentsau

Belarusian State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge