Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tonya C. Walser is active.

Publication


Featured researches published by Tonya C. Walser.


Cancer Research | 2006

Antagonism of CXCR3 Inhibits Lung Metastasis in a Murine Model of Metastatic Breast Cancer

Tonya C. Walser; Salah Rifat; Xinrong Ma; Namita Kundu; Christopher W. Ward; Olga Goloubeva; Michael G. Johnson; Julio C. Medina; Tassie L. Collins; Amy M. Fulton

Tumor cells aberrantly express chemokines and/or chemokine receptors, and some may promote tumor growth and metastasis. We examined the expression and function of chemokine receptor CXCR3 in a syngeneic murine model of metastatic breast cancer. By flow cytometry, CXCR3 was detected in all murine mammary tumor cell lines examined. All human breast cancer cell lines examined also expressed CXCR3, as did the immortalized but nontumorigenic MCF-10A cell line. Interaction of CXCR3 ligands, CXCL9, CXCL10, and CXCL11, with CXCR3 on the highly malignant murine mammary tumor cell line 66.1 resulted in intracellular calcium mobilization and chemotaxis in vitro. To test the hypothesis that tumor metastasis is facilitated by CXCR3 expressed by tumor cells, we employed a small molecular weight antagonist of CXCR3, AMG487. 66.1 tumor cells were pretreated with AMG487 prior to i.v. injection into immune-competent female mice. Antagonism of CXCR3 on 66.1 tumor cells inhibited experimental lung metastasis, and this antimetastatic activity was compromised in mice depleted of natural killer cells. Systemic administration of AMG487 also inhibited experimental lung metastasis. In contrast to the antimetastatic effect of AMG487, local growth of 66.1 mammary tumors was not affected by receptor antagonism. These studies indicate that murine mammary tumor cells express CXCR3 which facilitates the development of lung metastases. These studies also indicate for the first time that a small molecular weight antagonist of CXCR3 has the potential to inhibit tumor metastasis.


Cancer Research | 2006

Prostaglandin E Receptor EP4 Antagonism Inhibits Breast Cancer Metastasis

Xinrong Ma; Namita Kundu; Salah Rifat; Tonya C. Walser; Amy M. Fulton

Cyclooxygenase-2 (COX-2) expression in epithelial tumors is frequently associated with a poor prognosis. In a murine model of metastatic breast cancer, we showed that COX-2 inhibition is associated with decreased metastatic capacity. The COX-2 product, prostaglandin E(2) (PGE(2)), acts through a family of G protein-coupled receptors designated EP1-4 that mediate intracellular signaling by multiple pathways. We characterized EP receptor expression on three murine mammary tumor cell lines and show that all four EP isoforms were detected in each cell. Stimulation of cells with either PGE(2) or the selective EP4/EP2 agonist PGE(1)-OH resulted in increased intracellular cyclic AMP and this response was inhibited with either EP2 or EP4 antagonists. Nothing is known about the function of EP receptors in tumor metastasis. We tested the hypothesis that the prevention of EP receptor signaling would, like inhibition of PGE(2) synthesis, inhibit tumor metastasis. Our results show for the first time that antagonism of the EP4 receptor with either AH23848 or ONO-AE3-208 reduced metastasis as compared with vehicle-treated controls. The therapeutic effect was comparable to that observed with the dual COX-1/COX-2 inhibitor indomethacin. EP3 antagonism had no effect on tumor metastasis. Mammary tumor cells migrated in vitro in response to PGE(2) and this chemotactic response was blocked by EP receptor antagonists. Likewise, the proliferation of tumor cells was also directly inhibited by antagonists of either EP4 or EP1/EP2. These studies support the hypothesis that EP receptor antagonists may be an alternative approach to the use of COX inhibitors to prevent tumor metastasis.


Proceedings of the American Thoracic Society | 2008

Smoking and Lung Cancer : The Role of Inflammation

Tonya C. Walser; Xiaoyan Cui; Jane Yanagawa; Jay M. Lee; Eileen Heinrich; Gina Lee; Sherven Sharma; Steven M. Dubinett

Worldwide over 1 million people die due to lung cancer each year. It is estimated that cigarette smoking explains almost 90% of lung cancer risk in men and 70 to 80% in women. Clinically evident lung cancers have multiple genetic and epigenetic abnormalities. These abnormalities may result in activation of oncogenes and inactivation of tumor-suppressor genes. Chronic inflammation, which is known to promote cancer, may result both from smoking and from genetic abnormalities. These mediators in turn may be responsible for increased macrophage recruitment, delayed neutrophil clearance, and increase in reactive oxygen species (ROS). Thus, the pulmonary environment presents a unique milieu in which lung carcinogenesis proceeds in complicity with the host cellular network. The pulmonary diseases that are associated with the greatest risk for lung cancer are characterized by abundant and deregulated inflammation. Pulmonary disorders such as chronic obstructive pulmonary disease (COPD)/emphysema are characterized by profound abnormalities in inflammatory and fibrotic pathways. The cytokines and growth factors aberrantly produced in COPD and the developing tumor microenvironment have been found to have deleterious properties that simultaneously pave the way for both epithelial-mesenchymal transition (EMT) and destruction of specific host cell-mediated immune responses. Full definition of these pathways will afford the opportunity to intervene in specific inflammatory events mediating lung tumorigenesis and resistance to therapy.


Current Opinion in Pulmonary Medicine | 2009

Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer.

Gina Lee; Tonya C. Walser; Steven M. Dubinett

Purpose of review Smoking is a major risk factor for lung cancer, which is the leading cause of cancer-related deaths both in the USA and worldwide. Chronic obstructive pulmonary disease and emphysema are comorbid conditions often found in lung cancer patients. The inflammatory pathways that link chronic obstructive pulmonary disease, emphysema, and lung cancer likely involve genetic and epigenetic modulations due to chronic tissue injury and abnormal tumor immunity in susceptible hosts. Recent findings Chronic airway inflammation contributes to alterations in the bronchial epithelium and lung microenvironment, provoking a milieu conducive to pulmonary carcinogenesis. For example, inflammation-inducible cyclooxygenase-2 is upregulated in nonsmall cell lung cancer and also plays an important role in promoting epithelial-to-mesenchymal transition. Genetic changes in the airway epithelium of smokers may help predict or identify individuals at risk for lung cancer. Finally, radiographic findings of emphysema have been established as independent risk factors for lung cancer. Summary The relationships between inflammation, airflow obstruction, and lung cancer are complex. Deregulated inflammation is complicit in the pathogenesis of chronic obstructive pulmonary disease and lung cancer, but the overlap of signaling events is not yet fully understood. Tobacco exposure is an important risk factor that confers long-term risk of lung disease. Diagnostic sensitivity of detecting lung cancer may improve with the utilization of genetic profiling in combination with pathologic evaluation of airway epithelium. Additional research is required to understand the role of epithelial-to-mesenchymal transition in chronic inflammatory lung diseases and lung carcinogenesis.


Clinical Cancer Research | 2009

Snail Promotes CXCR2 Ligand–Dependent Tumor Progression in Non–Small Cell Lung Carcinoma

Jane Yanagawa; Tonya C. Walser; Li X. Zhu; Longsheng Hong; Michael C. Fishbein; Vei Mah; David Chia; Lee Goodglick; David Elashoff; Jie Luo; Clara E. Magyar; Mariam Dohadwala; Jay M. Lee; Maie A. St. John; Robert M. Strieter; Sherven Sharma; Steven M. Dubinett

Purpose: As a transcriptional repressor of E-cadherin, Snail has predominantly been associated with epithelial-mesenchymal transition, invasion, and metastasis. However, other important Snail-dependent malignant phenotypes have not been fully explored. Here, we investigate the contributions of Snail to the progression of nonsmall cell lung cancer (NSCLC). Experimental Design: Immunohistochemistry was done to quantify and localize Snail in human lung cancer tissues, and tissue microarray analysis was used to correlate these findings with survival. NSCLC cell lines gene-modified to stably overexpress Snail were evaluated in vivo in two severe combined immunodeficiency murine tumor models. Differential gene expression between Snail-overexpressing and control cell lines was evaluated using gene expression microarray analysis. Results: Snail is upregulated in human NSCLC tissue, and high levels of Snail expression correlate with decreased survival (P < 0.026). In a heterotopic model, mice bearing Snail-overexpressing tumors developed increased primary tumor burden (P = 0.008). In an orthotopic model, mice bearing Snail-overexpressing tumors also showed a trend toward increased metastases. In addition, Snail overexpression led to increased angiogenesis in primary tumors as measured by MECA-32 (P < 0.05) positivity and CXCL8 (P = 0.002) and CXCL5 (P = 0.0003) concentrations in tumor homogenates. Demonstrating the importance of these proangiogenic chemokines, the Snail-mediated increase in tumor burden was abrogated with CXCR2 blockade. Gene expression analysis also revealed Snail-associated differential gene expression with the potential to affect angiogenesis and diverse aspects of lung cancer progression. Conclusion: Snail upregulation plays a role in human NSCLC by promoting tumor progression mediated by CXCR2 ligands. (Clin Cancer Res 2009;15(22):68209)


Expert Review of Anticancer Therapy | 2007

Inflammation and lung carcinogenesis: applying findings in prevention and treatment

Katherine A. Peebles; Jay M. Lee; Jenny T. Mao; Saswati Hazra; Karen L. Reckamp; Kostyantyn Krysan; Mariam Dohadwala; Eileen Heinrich; Tonya C. Walser; Xiaoyan Cui; Felicita Baratelli; Edward B. Garon; Sherven Sharma; Steven M. Dubinett

Lung carcinogenesis is a complex process requiring the acquisition of genetic mutations that confer the malignant phenotype as well as epigenetic alterations that may be manipulated in the course of therapy. Inflammatory signals in the lung cancer microenvironment can promote apoptosis resistance, proliferation, invasion, metastasis, and secretion of proangiogenic and immunosuppressive factors. Here, we discuss several prototypical inflammatory mediators controlling the malignant phenotype in lung cancer. Investigation into the detailed molecular mechanisms underlying the tumor-promoting effects of inflammation in lung cancer has revealed novel potential drug targets. Cytokines, growth factors and small-molecule inflammatory mediators released in the developing tumor microenvironment pave the way for epithelial–mesenchymal transition, the shift from a polarized, epithelial phenotype to a highly motile mesenchymal phenotype that becomes dysregulated during tumor invasion. Inflammatory mediators within the tumor microenvironment are derived from neoplastic cells as well as stromal and inflammatory cells; thus, lung cancer develops in a host environment in which the deregulated inflammatory response promotes tumor progression. Inflammation-related metabolic and catabolic enzymes (prostaglandin E2 synthase, prostaglandin I2 synthase and 15-hydroxyprostaglandin dehydrogenase), cell-surface receptors (E-type prostaglandin receptors) and transcription factors (ZEB1, SNAIL, PPARs, STATs and NF-κB) are differentially expressed in lung cancer cells compared with normal lung epithelial cells and, thus, may contribute to tumor initiation and progression. These newly discovered molecular mechanisms in the pathogenesis of lung cancer provide novel opportunities for targeted therapy and prevention in lung cancer.


Clinical Cancer Research | 2009

Proinflammatory Mediators Upregulate Snail in Head and Neck Squamous Cell Carcinoma

Maie A. St. John; Mariam Dohadwala; Jie Luo; Guanyu Wang; Gina Lee; Hubert Shih; Eileen Heinrich; Kostantyn Krysan; Tonya C. Walser; Saswati Hazra; Li Zhu; Chi Lai; Elliot Abemayor; Michael C. Fishbein; David Elashoff; Sherven Sharma; Steven M. Dubinett

Purpose: Inflammatory cytokines have been implicated in the progression of head and neck squamous cell carcinoma (HNSCC). Herein we investigate the mechanisms by which interleukin-1β (IL-1β) might contribute to Epithelial-Mesenchymal Transition (EMT) in HNSCC. Experimental Design: We evaluated the effect of IL-1β on the molecular events of EMT in surgical specimens and HNSCC cell lines. We examined the correlation with tumor histologic features, and a SCID xenograft model was used to assess the effects of Snail overexpression. Results: Cyclooxygenase-2 (COX-2)-dependent pathways contribute to the modulation of E-cadherin expression in HNSCC. An inverse relationship between COX-2 and E-cadherin was shown in situ by double immunohistochemical staining of human HNSCC tissue sections. Treatment of HNSCC cells with IL-1β caused the downregulation of E-cadherin expression and upregulation of COX-2 expression. This effect was blocked in the presence of COX-2 small hairpin RNA. IL-1β–treated HNSCC cell lines showed a significant decrease in E-cadherin mRNA and an increase in the mRNA expression of the transcriptional repressor Snail. IL-1β exposure led to enhanced Snail binding at the chromatin level. Small hairpin RNA–mediated knockdown of Snail interrupted the capacity of IL-1β to downregulate E-cadherin. In a SCID xenograft model, HNSCC Snail-overexpressing cells showed significantly increased primary and metastatic tumor burdens. Conclusions: IL-1β modulates Snail and thereby regulates COX-2–dependent E-cadherin expression in HNSCC. This is the first report indicating the role of Snail in the inflammation-induced promotion of EMT in HNSCC. This newly defined pathway for transcriptional regulation of E-cadherin in HNSCC has important implications for targeted chemoprevention and therapy. (Clin Cancer Res 2009;15(19):6018–27)


Journal of Immunotherapy | 2007

Immune-mediated modulation of breast cancer growth and metastasis by the chemokine Mig (CXCL9) in a murine model.

Tonya C. Walser; Xinrong Ma; Namita Kundu; Russell Dorsey; Olga Goloubeva; Amy M. Fulton

Current immunotherapies are limited by several factors, including the failure to recruit sufficient numbers of immune effector cells to tumors. The chemokine monokine induced by γ-interferon (Mig; CXCL9) attracts activated T cells and natural killer (NK) cells bearing the chemokine receptor CXCR3. We investigated Mig as an immunotherapeutic agent in a syngeneic murine model of metastatic breast cancer. We transfected the highly malignant murine mammary tumor cell line 66.1 to stably express murine Mig cDNA. Immune-competent mice injected with Mig-expressing tumor cells developed smaller local tumors and fewer lung metastases, and they survived longer than mice injected with vector-control tumor cells. Mig-mediated inhibition of local tumor growth was lost in the absence of host T cells. Mig-transduced tumors had increased numbers of CD4+ T cells compared with vector-control tumors, consistent with the T-cell chemoattractant property of Mig, and many tumor-infiltrating host cells expressed CXCR3. NK cells had not been examined previously as a possible effector cell in Mig-based therapies. Our studies now show that NK cells are critical to the mechanism by which Mig limits metastasis. Inhibition of angiogenesis was not implicated as a mechanism of Mig-mediated therapy in this model. These studies support the hypothesis that by manipulating the Mig-CXCR3 gradient, it is possible to direct host immune effector cells to tumors, curtailing both local tumor growth and metastasis. These studies also implicate host NK cells as an additional effector cell critical for Mig-mediated control of metastasis.


Cancer Immunology, Immunotherapy | 2005

Cyclooxygenase inhibitors modulate NK activities that control metastatic disease

Namita Kundu; Tonya C. Walser; Xinrong Ma; Amy M. Fulton

Cyclooxygenase (COX) inhibitors have demonstrated efficacy in models of human cancer but the relevant mechanisms have not all been elucidated. Both Cox-dependent as well as Cox-independent mechanisms have been implicated. Using a syngeneic model of metastatic breast cancer, we have investigated the effect of Cox inhibitors on NK functions that are critical to the control of metastatic disease. NK recognition of target cells is governed by a balance of activating and inhibiting receptors that bind ligands including MHC class I. We now show that treatment of tumor cells with the nonselective COX-1/COX-2 inhibitor indomethacin or the selective COX-2 inhibitor celecoxib leads to decreased expression of the MHC class I molecules Ld and Kd . Downregulated class I expression is associated with concomitant increased sensitivity to NK cell-mediated lysis. Both COX inhibitors limit tumor metastasis and this therapeutic effect is dependent on NK but not T cell function. Antimetastatic activity is also lost in the absence of interferon- γ (IFN-γ). Both COX inhibitors also suppress local tumor growth of subcutaneously implanted mammary tumor cells in immune competent Balb/cByJ mice. This therapeutic activity is lost in the absence of either CD4+ or CD8+ T cells, but is not compromised by the loss of NK activity. Thus, the mechanism of tumor inhibition differs in the context of local versus metastatic disease. Taken together, these findings are consistent with a mechanism not previously described, whereby COX inhibitors may relieve MHC-mediated inhibition of NK cytotoxicity leading to recognition and lysis of metastatic tumor cells.


Cancer Microenvironment | 2012

The Inflammatory Tumor Microenvironment, Epithelial Mesenchymal Transition and Lung Carcinogenesis

Eileen Heinrich; Tonya C. Walser; Kostyantyn Krysan; Elvira L. Liclican; Jeanette L. Grant; Nicole L Rodriguez; Steven M. Dubinett

The inflammatory tumor microenvironment (TME) has many roles in tumor progression and metastasis, including creation of a hypoxic environment, increased angiogenesis and invasion, changes in expression of microRNAs (miRNAs) and an increase in a stem cell phenotype. Each of these has an impact on epithelial mesenchymal transition (EMT), particularly through the downregulation of E-cadherin. Here we review seminal work and recent findings linking the role of inflammation in the TME, EMT and lung cancer initiation, progression and metastasis. Finally, we discuss the potential of targeting aspects of inflammation and EMT in cancer prevention and treatment.

Collaboration


Dive into the Tonya C. Walser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherven Sharma

University of California

View shared research outputs
Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jay M. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Yanagawa

University of California

View shared research outputs
Top Co-Authors

Avatar

Jill E. Larsen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Saswati Hazra

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge