Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tore Samuelsson is active.

Publication


Featured researches published by Tore Samuelsson.


The EMBO Journal | 2006

Large-scale identification of genes implicated in kidney glomerulus development and function

Minoru Takemoto; Liqun He; Jenny Norlin; Jaakko Patrakka; Zhijie Xiao; Tatiana V. Petrova; Cecilia Bondjers; Julia Asp; Elisabet Wallgard; Ying Sun; Tore Samuelsson; Petter Mostad; Samuel Lundin; Naoyuki Miura; Yoshikazu Sado; Kari Alitalo; Susan E. Quaggin; Karl Tryggvason; Christer Betsholtz

To advance our understanding of development, function and diseases in the kidney glomerulus, we have established and large‐scale sequenced cDNA libraries from mouse glomeruli at different stages of development, resulting in a catalogue of 6053 different genes. The glomerular cDNA clones were arrayed and hybridized against a series of labeled targets from isolated glomeruli, non‐glomerular kidney tissue, FACS‐sorted podocytes and brain capillaries, which identified over 300 glomerular cell‐enriched transcripts, some of which were further sublocalized to podocytes, mesangial cells and juxtaglomerular cells by in situ hybridization. For the earliest podocyte marker identified, Foxc2, knockout mice were used to analyze the role of this protein during glomerular development. We show that Foxc2 controls the expression of a distinct set of podocyte genes involved in podocyte differentiation and glomerular basement membrane maturation. The primary podocyte defects also cause abnormal differentiation and organization of the glomerular vascular cells. We surmise that studies on the other novel glomerulus‐enriched transcripts identified in this study will provide new insight into glomerular development and pathomechanisms of disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Gel-forming mucins appeared early in metazoan evolution

Gunnar C. Hansson; Tore Samuelsson

Mucins are proteins that cover and protect epithelial cells and are characterized by domains rich in proline, threonine, and serine that are heavily glycosylated (PTS or mucin domains). Because of their sequence polymorphism, these domains cannot be used for evolutionary analysis. Instead, we have made use of the von Willebrand D (VWD) and SEA domains, typical for mucins. A number of animal genomes were examined for these domains to identify mucin homologues, and domains of the resulting proteins were used in phylogenetic studies. The frog Xenopus tropicalis stands out because the number of gel-forming mucins has markedly increased to at least 25 as compared with 5 for higher animals. Furthermore, the frog Muc2 homologues contain unique PTS domains where cysteines are abundant. This animal also has a unique family of secreted mucin-like proteins with alternating PTS and SEA domains, a type of protein also identified in the fishes. The evolution of the Muc4 mucin seems to have occurred by recruitment of a PTS domain to AMOP, NIDO, and VWD domains from a sushi domain-containing family of proteins present in lower animals, and Xenopus is the most deeply branching animal where a protein similar to the mammalian Muc4 was identified. All transmembrane mucins seem to have appeared in the vertebrate lineage, and the MUC1 mucin is restricted to mammals. In contrast, proteins with properties of the gel-forming mucins were identified also in the starlet sea anemone Nematostella vectensis, demonstrating an early origin of this group of mucins.


Nature Communications | 2013

The landscape of viral expression and host gene fusion and adaptation in human cancer

Ka-Wei Tang; Babak Alaei-Mahabadi; Tore Samuelsson; Magnus Lindh; Erik Larsson

Viruses cause 10–15% of all human cancers. Massively parallel sequencing has recently proved effective for uncovering novel viruses and virus–tumour associations, but this approach has not yet been applied to comprehensive patient cohorts. Here we screen a diverse landscape of human cancer, encompassing 4,433 tumours and 19 cancer types, for known and novel expressed viruses based on >700 billion transcriptome sequencing reads from The Cancer Genome Atlas Research Network. The resulting map confirms and extends current knowledge. We observe recurrent fusion events, including human papillomavirus insertions in RAD51B and ERBB2. Patterns of coadaptation between host and viral gene expression give clues to papillomavirus oncogene function. Importantly, our analysis argues strongly against viral aetiology in several cancers where this has frequently been proposed. We provide a virus–tumour map of unprecedented scale that constitutes a reference for future studies of tumour-associated viruses using transcriptome sequencing data.


FEBS Letters | 2001

YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly.

Joen Luirink; Tore Samuelsson; Jan-Willem de Gier

This review focuses on a novel, evolutionarily conserved mediator of membrane protein assembly in bacteria, mitochondria and chloroplasts. This factor is designated YidC in Escherichia coli, and is localized in the inner membrane. YidC is homologous to Oxa1p in the mitochondrial inner membrane and Alb3 in the chloroplast thylakoid membrane, but does not seem to have a homologue in the endoplasmic reticulum membrane. It has been suggested that YidC operates both as a separate unit and in connection with the SecYEG‐translocon depending on the substrate membrane protein that is integrated into the membrane. Mitochondria do not possess a SecYEG‐like complex and Oxa1p is thought to form, or to contribute to the formation of, a novel translocon in the mitochondrial inner membrane. Alb3 in the chloroplast thylakoid membrane is, just like YidC and Oxa1p, involved in membrane protein assembly, but only few details are known.


Current Genetics | 2005

A family of putative transcription termination factors shared amongst metazoans and plants

Tomas Linder; Chan Bae Park; Jordi Asin-Cayuela; Mina Pellegrini; Nils-Göran Larsson; Maria Falkenberg; Tore Samuelsson; Claes M. Gustafsson

The human mitochondrial transcription termination factor (mTERF) is involved in the regulation of transcription of the mitochondrial genome. Similarity searches and phylogenetic analysis demonstrate that mTERF is a member of large and complex protein family (the MTERF family) shared amongst metazoans and plants. Interestingly, we identify three novel MTERF genes in vertebrates, which all encode proteins with predicted mitochondrial localization. Members of the MTERF family have so far not been detected in fungi, supporting the notion that mitochondrial transcription regulation may have evolved separately in yeast and animal cells.


Nucleic Acids Research | 2005

Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes.

Paul Piccinelli; Magnus Alm Rosenblad; Tore Samuelsson

RNases P and MRP are ribonucleoprotein complexes involved in tRNA and rRNA processing, respectively. The RNA subunits of these two enzymes are structurally related to each other and play an essential role in the enzymatic reaction. Both of the RNAs have a highly conserved helical region, P4, which is important in the catalytic reaction. We have used a bioinformatics approach based on conserved elements to computationally analyze available genomic sequences of eukaryotic organisms and have identified a large number of novel nuclear RNase P and MRP RNA genes. For MRP RNA for instance, this investigation increases the number of known sequences by a factor of three. We present secondary structure models of many of the predicted RNAs. Although all sequences are able to fold into the consensus secondary structure of P and MRP RNAs, a striking variation in size is observed, ranging from a Nosema locustae MRP RNA of 160 nt to much larger RNAs, e.g. a Plasmodium knowlesi P RNA of 696 nt. The P and MRP RNA genes appear in tandem in some protists, further emphasizing the close evolutionary relationship of these RNAs.


Nucleic Acids Research | 2008

Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components

Marcela Dávila López; Magnus Alm Rosenblad; Tore Samuelsson

The RNA molecules of the spliceosome are critical for specificity and catalysis during splicing of eukaryotic pre-mRNA. In order to examine the evolution and phylogenetic distribution of these RNAs, we analyzed 149 eukaryotic genomes representing a broad range of phylogenetic groups. RNAs were predicted using high-sensitivity local alignment methods and profile HMMs in combination with covariance models. The results provide the most comprehensive view so far of the phylogenetic distribution of spliceosomal RNAs. RNAs were predicted in many phylogenetic groups where these RNA were not previously reported. Examples are RNAs of the major (U2-type) spliceosome in all fungal lineages, in lower metazoa and many protozoa. We also identified the minor (U12-type) spliceosomal U11 and U6atac RNAs in Acanthamoeba castellanii, where U12 spliceosomal RNA as well as minor introns were reported recently. In addition, minor-spliceosome-specific RNAs were identified in a number of phylogenetic groups where previously such RNAs were not observed, including the nematode Trichinella spiralis, the slime mold Physarum polycephalum and the fungal lineages Zygomycota and Chytridiomycota. The detailed map of the distribution of the U12-type RNA genes supports an early origin of the minor spliceosome and points to a number of occasions during evolution where it was lost.


Nucleic Acids Research | 2006

Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes

Magnus Alm Rosenblad; Marcela Dávila López; Paul Piccinelli; Tore Samuelsson

The RNases P and MRP are involved in tRNA and rRNA processing, respectively. Both enzymes in eukaryotes are composed of an RNA molecule and 9–12 protein subunits. Most of the protein subunits are shared between RNases P and MRP. We have here performed a computational analysis of the protein subunits in a broad range of eukaryotic organisms using profile-based searches and phylogenetic methods. A number of novel homologues were identified, giving rise to a more complete inventory of RNase P/MRP proteins. We present evidence of a relationship between fungal Pop8 and the protein subunit families Rpp14/Pop5 as well as between fungal Pop6 and metazoan Rpp25. These relationships further emphasize a structural and functional similarity between the yeast and human P/MRP complexes. We have also identified novel P and MRP RNAs and analysis of all available sequences revealed a K-turn motif in a large number of these RNAs. We suggest that this motif is a binding site for the Pop3/Rpp38 proteins and we discuss other structural features of the RNA subunit and possible relationships to the protein subunit repertoire.


BMC Genomics | 2006

An inventory of mucin genes in the chicken genome shows that the mucin domain of Muc13 is encoded by multiple exons and that ovomucin is part of a locus of related gel-forming mucins

Gunnar C. Hansson; Tore Samuelsson

BackgroundMucins are large glycoproteins that cover epithelial surfaces of the body. All mucins contain at least one PTS domain, a region rich in proline, threonine and serine. Mucins are also characterized by von Willebrand D (VWD) domains or SEA domains. We have developed computational methods to identify mucin genes and proteins based on these properties of the proteins. Using such methods we are able to characterize different organisms where genome sequence is available with respect to their mucin repertoire.ResultsWe have here made a comprehensive analysis of potential mucins encoded by the chicken (Gallus gallus) genome. Three transmembrane mucins (Muc4, Muc13, and Muc16) and four gel-forming mucins (Muc6, Muc2, Muc5ac, and Muc5b) were identified. The gel-forming mucins are encoded within a locus similar to the corresponding human mucins. However, the chicken has an additional gene inserted between Muc2 and Muc5ac that encodes the the α-subunit of ovomucin, a protein similar to Muc2, but it is lacking a PTS domain. We also show that the β-subunit of ovomucin is the orthologue of human MUC6. The transmembrane Muc13 gene is in chicken as well as in mammals adjacent to the HEG (heart of glass) gene. HEG has PTS, EGF and transmembrane domains like Muc13, suggesting that these two proteins are evolutionary related. Unlike previously known mucins, the PTS domain of Muc13 is encoded by multiple exons, where each exon encodes a repeat unit of the PTS domain.ConclusionWe report new mucin homologues in chicken and this information will aid in understanding the evolution of mucins in vertebrates. The fact that ovomucin, a protein not found in mammals, was located in the same locus as other gel-forming mucins provides strong support that these proteins are evolutionary related. Furthermore, a relationship of HEG and the transmembrane Muc13 is suggested on the basis of their biochemical properties and their presence in the same locus. Finally, our finding that the chicken Muc13 is distributed between multiple exons raises the interesting possibility that the length of the PTS domain could be controlled by alternative splicing.


Molecular Microbiology | 2001

Mediator – a universal complex in transcriptional regulation

Claes M. Gustafsson; Tore Samuelsson

The Mediator complex is essential for basal and regulated expression of nearly all RNA polymerase II‐dependent genes in the Saccharomyces cerevisiae genome. Mediator acts as a bridge, conveying regulatory information from enhancers and other control elements to the promoter. It is now clear that Mediator‐like complexes also exist in higher eukaryotic cells and that they have an important role in metazoan transcriptional regulation. However, the exact mechanism of Mediator‐dependent transcriptional regulation remains unclear. We review here some recent advances in our understanding of Mediator structure and function. We also discuss a model to account for the functional and evolutionary relationship between yeast and metazoan Mediators. As an appendix to this review, we have created a database, MEDB, in which we have compiled information about all the S. cerevisiae Mediator subunits and their homologues in other eukaryotic cells (http://bio.lundberg.gu.se/medb/).

Collaboration


Dive into the Tore Samuelsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Palmqvist

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Ståhlman

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge