Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Torsten Hertrampf is active.

Publication


Featured researches published by Torsten Hertrampf.


Toxicology Letters | 2010

Long-term dietary isoflavone exposure enhances estrogen sensitivity of rat uterine responsiveness mediated through estrogen receptor α.

Patrick Diel; Oliver Zierau; Torsten Hertrampf; Juliane Maass; Günter Vollmer

The outcome of long-term exposure to dietary isoflavones on estrogen sensitive tissues is discussed controversially. We performed a study on tissue specific effects of lifelong isoflavone exposure on the rat uterus with exposure being initiated prenatally. We compare the effects of the dietary isoflavones, genistein (GEN) and daidzein, or GEN alone to those of isoflavone free diet. Therefore, one group received a phytoestrogen-free diet (PE-free), one an isoflavone-high diet (ISO-high) and one the PE-free diet supplemented with GEN (GEN-rich) throughout their whole lifetime. In ovariectomized adult females a uterotrophic assay was performed, comparing 17beta-estradiol, GEN and two estrogen receptor subtype-specific agonists. The uterus wet weight, the uterine epithelial heights, and uterine markers for proliferation, estrogenicity and estrogen-dependent water channels were determined on mRNA and protein level. The dietary ISO pre-exposure results in a much stronger uterine weight increase following external ERalpha-mediated estrogenic stimuli than seen in the PE-free group. These strongly increased effects were not exclusively due to proliferation hence proliferation associated parameters were almost identical in all groups. Additionally, gene expression analysis showed that estrogen-dependent water channels are highly affected by ISO-containing diets. In conclusion, the lifelong dietary ISO ingestion enhances severely the uterine responsiveness to ERalpha-mediated estrogenic stimuli in female rats. While the uterine proliferation rate was not affected, the water homeostasis was highly affected. Our data clearly demonstrate that estrogen responsiveness is highly modulated by dietary isoflavones. Whether this estrogen sensitivity shift is beneficial or adverse to health remains to be elucidated. However, this is highly relevant for interpreting data from regional differences in endocrine cancer.


Toxicology Letters | 2009

Comparison of the bone protective effects of an isoflavone-rich diet with dietary and subcutaneous administrations of genistein in ovariectomized rats.

Torsten Hertrampf; B. Schleipen; C. Offermanns; M. Velders; U. Laudenbach; Patrick Diel

Administration of the isoflavone genistein (GEN) has been described to result in bone protection but also to induce uterotrophic responses. To compare bone protective effects of GEN with an isoflavone-rich diet (IRD) and to further elucidate molecular mechanisms involved in bone-protection, ovariectomized rats (OVX) received either a diet low in isoflavone content (IDD) enriched with GEN (42 mg kg(-1)b.wtd(-1)) (GEN(d)), an IRD (14 mg kg(-1)b.wtd(-1) GEN, 14 mg kg(-1)b.wtd(-1) daidzein) or were treated subcutaneously (s.c.) with GEN (10 mg kg(-1)b.wtd(-1)) (GEN(sc)) for 12 weeks. Intact (SHAM), vehicle treated OVX animals and those substituted with 17beta-estradiol (2microg kg(-1)b.wtd(-1)) (E(2)), served as controls. OVX-induced bone loss could be antagonized in E(2), GEN(sc), GEN(d) and IRD groups. Uterine wet weight (UWW) was only stimulated in E(2) and GEN(sc) animals. Serum biomarkers of bone-formation (osteocalcin, osteopontin) and bone-resorption (telopeptides of collagen type I, pyridinoline cross-links) were elevated in OVX compared to SHAM and E(2) animals. Feeding IRD stimulated bone-formation and inhibited bone-resorption, whereas s.c. or dietary administration of GEN only resulted in a stimulation of bone-formation. The results of the present study indicate that in contrast to s.c. administration, dietary intake of GEN resulted in bone protection without stimulation of UWW. Dietary intake of isoflavones by an IRD also did not result in a stimulation of UWW, yet IRD appeared to be more effective in bone protection than administration of pure GEN.


Molecular and Cellular Endocrinology | 2008

Estrogen receptor subtype-specific effects on markers of bone homeostasis.

Torsten Hertrampf; B. Schleipen; M. Velders; U. Laudenbach; Karl Heinrich Fritzemeier; Patrick Diel

To further elucidate the processes involved in the physiology of bone-protection by estrogens, ovariectomized (OVX) rats were treated subcutaneously with 17beta-estradiol (E(2)), the ERalpha-specific agonist (16alpha-LE2) and the ERbeta-specific agonist (8beta-VE2). OVX and intact animals served as controls. Biomarkers of bone-formation (osteocalcin (OC), osteopontin (OPN)) and bone-resorption (telopeptides of collagen type I (CTx), pyridinoline cross-links (Pyd)) were quantified. Bone mineral density was measured by computed tomography. OVX-induced bone loss could be antagonized by subcutaneous administration of 17beta-estradiol and 16alpha-LE2. Serum levels of CTx, OC and OPN were significantly elevated in OVX compared to intact animals and reduced by 17beta-estradiol and 16alpha-LE2. Treatment of OVX rats with 8beta-VE2 did not affect bone mineral density (BMD) or bone-marker serum levels. Taken together, the complex expression pattern of bone-markers in OVX rats following subcutaneous administration of ER subtype-specific agonists indicates that 17beta-estradiol exerts its bone-protective effects by modulating the activity of osteoclasts and osteoblasts via ERalpha.


Molecular and Cellular Endocrinology | 2012

Impact of estradiol, ER subtype specific agonists and genistein on energy homeostasis in a rat model of nutrition induced obesity

Carmen Weigt; Torsten Hertrampf; Nora Zoth; Karl Heinrich Fritzemeier; Patrick Diel

Estrogens are known to be involved in the control of energy homeostasis. Here we investigated the role of ER alpha and ER beta in a model of nutrition induced obesity. Ovariectomized Wistar rats were fed a high fat diet and received either vehicle, E2, ER subtype selective agonists (Alpha and Beta) or genistein. After 10 weeks, body weight, visceral fat, serum leptin, blood lipids, and in the soleus muscle anabolic markers were determined. Treatment with E2 and Alpha decreased body weight, total cholesterol and VLDL. Visceral fat mass, adipocyte size, and serum leptin were reduced by E2, Alpha and Beta. In the soleus muscle, treatment with E2 and Beta modulated Igf1 and Pax7 gene expression and resulted in larger muscle fibers. Our data indicate that blood lipids are affected via ER alpha, whereas activation of ER beta results in an increase of soleus muscle mass. Adipose tissue homeostasis seems to be affected via both ERs.


Molecular and Cellular Endocrinology | 2010

Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive Immuno PCR

Patrick Diel; Thorsten Schiffer; Stephan Geisler; Torsten Hertrampf; Stephanie Mosler; Sven Schulz; Karl Florian Wintgens; Michael Adler

Myostatin propeptide (MYOPRO) and follistatin (FOLLI) are potent myostatin inhibitors. In this study we analysed effects of training and androgens on MYOPRO and FOLLI concentrations in blood and skeletal muscle using Immuno PCR. Young healthy males performed either a 3-month endurance training or a strength training. Blood and biopsy samples were analysed. Training did not significantly affect MYOPRO and FOLLI concentrations in serum and muscle. To investigate whether total skeletal muscle mass may affect circulating MYOPRO and FOLLI levels, blood samples of tetraplegic patients, untrained volunteers and bodybuilders were analysed. MYOPRO was significantly increased exclusively in the bodybuilder group. In orchiectomised rats MYOPRO increased in blood and muscle after treatment with testosterone. In summary our data demonstrate that moderate training does not affect the concentrations of MYOPRO to FOLLI. In contrast androgen treatment results in a significant increase of MYOPRO in skeletal muscle and serum.


Molecular and Cellular Endocrinology | 2005

Tissue-specific modulation of cyclooxygenase-2 (Cox-2) expression in the uterus and the v. cava by estrogens and phytoestrogens

Torsten Hertrampf; Simone Schmidt; Ute Laudenbach-Leschowsky; Jan Seibel; Patrick Diel

Cyclooxygenase 2 (Cox-2), an enzyme involved in prostaglandin production, is a key player in the development of pathologic changes, such as colorectal cancer, arteriosclerosis and thrombosis. In this study, we investigated the effects of estrogens, selective estrogen receptor modulators (SERMs), pure antiestrogens and phytoestrogens on the tissue-specific expression of Cox-2 in the uterus and the v. cava of ovariectomized female rats. Cox-2 expression could be detected in the uterine epithelium and in the endothelium of the v. cava. Cox-2 expression was time-dependently stimulated after administration of 17beta estradiol (E2) in the uterus. In the v. cava, E2 treatment resulted in a stimulated expression of the progesterone receptor (PR), a gene known to be regulated by E2, whereas Cox-2 was simultaneously down-regulated. Administration of the pure antiestrogen faslodex (Fas) had no effect on Cox-2 expression. In contrast, administration of tamoxifen (Tam) resulted in a decrease of Cox-2 expression in the v. cava but does not stimulate Cox-2 expression in the uterus. Interestingly, the same expression pattern of Cox-2 could be detected after dose-dependent administration of genistein (Gen). Here, down-regulation of Cox-2 could already be detected after administration of merely 0.5 mg/(kgBW) Gen, a dose where no effects on uterine weight were observed. In summary, our results demonstrate a reverse tissue-specific regulation of Cox-2 expression by estrogens in the v. cava and uterus indicating the existence of complex molecular mechanisms which have to be characterized in future studies. Remarkably, Tam and the phytoestrogen Gen, both share the ability to decrease the expression of Cox-2 in the v. cava without effecting its uterine expression. These observations may be of great importance with respect to potential beneficial or adverse effects of estrogens, SERMs and phytoestrogens on the cardiovascular tissue.


Molecular and Cellular Endocrinology | 2013

Molecular effects of ER alpha- and beta-selective agonists on regulation of energy homeostasis in obese female Wistar rats

Carmen Weigt; Torsten Hertrampf; Felix M. Kluxen; Ulrich Flenker; Frank Hülsemann; Karl Heinrich Fritzemeier; Patrick Diel

The molecular mechanisms underlying the effects of selective ER subtype activation on lipogenesis, adipogenesis, lipid utilization and storage as well as glucose metabolism are currently largely unknown and were analyzed in female OVX Wistar rats on a high-fat diet. Rats received estradiol (E2), ER subtype-selective agonists (Alpha and Beta), and genistein (Gen) for 10 weeks. In adipose tissue, treatment with E2, Alpha, and Beta significantly decreased lipogenic (SREBP-1c, FAS) and adipogenic genes (LPL, PPAR gamma). In liver and skeletal muscle of E2-, Alpha-, Beta-, and Gen-treated animals, lipogenesis and triglyceride accumulation were significantly reduced. Increased hepatic and muscular PPAR gamma mRNA expression was observed in untreated, Beta- and Gen-treated animals, which correlates with increased hepatic glucose uptake. However, only untreated animals showed impaired insulin sensitivity compared to all other groups. Therefore, PPAR gamma up-regulation in untreated animals suggests a compensatory mechanism, probably due to increased triglyceride accumulation in non-adipose tissues. Beta- and Gen-treated animals may benefit from the anabolic potency of ER beta that ameliorates lipid and glucose utilization in muscle. Activation of either ER subtype reduces fat enrichment and improves insulin sensitivity. Depending on the investigated tissue, different molecular pathways seem to be involved.


The Journal of Steroid Biochemistry and Molecular Biology | 2009

Long-term effects of dietary isoflavones on uterine gene expression profiles

Oliver Zierau; Torsten Hertrampf; Anja Bliedtner; Patrick Diel; Günter Vollmer

Isoflavones (ISOs) are bioactive food ingredients of the traditional East Asian diet and currently discussed as alternatives to classical hormone replacement therapies and for reducing the prevalence of hormone-dependent cancers. Although there are many studies on ISOs, not much is known about their long-term effects. Therefore, we performed an animal experiment analyzing the effects of three different diets: a phytoestrogen-free diet, a diet supplemented with genistein (700 microg/g diet) and an ISO-high diet (232 microg daidzein and 240 microg genistein/g) at two distinct time points, juvenile (21 days) and adult (97 days). Exposure started prior to mating of the parents and throughout the life of the offspring. We observed a stronger increase of uterine wet weights in juvenile offspring with genistein exposure (1018+/-350 mg/kg BW) than with ISO-high diet (497+/-133 mg/kg BW). Whereas the expression of proliferation related genes (PCNA; Ki67; IGF-1; IGF-1R), analyzed by real-time-qPCR and Western blot, were significantly down-regulated in juvenile animals exposed to genistein. Additionally, genistein exposure led to estrogenic responses, observed upon increase of complement C3 and decrease of estrogen receptors gene expressions, while the exposure to ISO-high diet did not show these effects. In conclusion, both the time point on which phytoestrogen exposure starts together with the composition of the ingested phytoestrogen containing diet are of great importance for the biological response of the offspring.


The Journal of Steroid Biochemistry and Molecular Biology | 2015

Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker diabetic fatty (ZDF) rats

Carmen Weigt; Torsten Hertrampf; Ulrich Flenker; Frank Hülsemann; Pinar Kurnaz; Karl Heinrich Fritzemeier; Patrick Diel

The leptin resistant Zucker diabetic fatty (ZDF) rats are hyperphagic and become obese, but whereas the males develop type 2 diabetes mellitus (T2DM), the females remain euglycaemic. As estrogen deficiency is known to increase the risk of developing T2DM, we evaluated the role of ER subtypes alpha and beta in the development of glucose tolerance in leptin resistant ovariectomized (OVX) ZDF rats. At least six rats per group were treated with either vehicle (OVX), 17β-estradiol (E2), ER subtype-selective agonists (Alpha and Beta), or genistein (Gen) for 17 weeks. At the end of the treatment period a glucose tolerance assay was performed and the metabolic flux of (13)C-glucose for the E2 group was investigated. OVX ZDF rats treated with E2, Alpha, Beta, and Gen tolerated the glucose significantly better than untreated controls. E2 treatment increased absorbance/flux of (13)C-glucose to metabolic relevant tissues such liver, adipose tissue, gastrocnemius, and soleus muscle. Moreover, whereas Alpha treatment markedly increased mRNA expression of GLUT4 in gastrocnemius muscle, Beta treatment resulted in the largest fiber sizes of the soleus muscle. Treatment with Gen increased both the mRNA expression of GLUT 4 and the fiber sizes in the skeletal muscle. In addition, E2 and Alpha treatment decreased food intake and body weight gain. In summary, estrogen-improved glucose absorption is mediated via different molecular mechanisms: while activation of ER alpha seems to stimulate muscular GLUT4 functionality, activation of ER beta results in a hypertrophy of muscle fibers. In addition, selective activation of ER alpha decreased food intake and body weight gain. Our data further indicate that ER subtype-selective agonists and genistein improve systemic glucose tolerance also in the absence of a functional leptin signaling pathway.


Molecular Nutrition & Food Research | 2012

In utero and postnatal exposure to isoflavones results in a reduced responsivity of the mammary gland towards estradiol

Almut F. Molzberger; Günter Vollmer; Torsten Hertrampf; Sabine E. Kulling; Patrick Diel

SCOPE Exposure scenarios during different stages of development of an organism are discussed to trigger adverse and beneficial effects of isoflavones (ISO). The aim of this study was to investigate how in utero and postnatal ISO exposure modulates the estrogen sensitivity of the mammary gland and to identify the underlying molecular mechanisms. METHODS AND RESULTS Therefore, rats were exposed to either ISO-free (IDD), ISO-rich (IRD) or genistein-rich diet (GRD), up to young adulthood. Proliferative activity (PCNA expression) in the mammary gland at different ages and the estrogen sensitivity of the mammary gland to estradiol (E₂) or genistein (GEN) in adult ovariectomized animals was determined and compared with different treatments. Treatment with E₂ resulted in a significant lower proliferative and estrogenic response of the mammary gland in IRD and GRD compared with IDD. This correlates to a change in the gene expression pattern and a decrease in the ratio of estrogen receptor alpha (ERα) beta (ERβ CONCLUSIONS Our results provide evidence that in utero and postnatal exposure to a diet rich in ISO but also to GEN reduces the sensitivity of the mammary gland toward estrogens and support the hypothesis that in utero and postnatal ISO exposure reduces the risk to develop breast cancer.

Collaboration


Dive into the Torsten Hertrampf's collaboration.

Top Co-Authors

Avatar

Patrick Diel

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar

Günter Vollmer

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gisela H. Degen

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Jan Seibel

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar

Oliver Zierau

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Almut F. Molzberger

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar

Carmen Weigt

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Simone Schmidt

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Heinrich Fritzemeier

Bayer HealthCare Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge