Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Torsten Klengel is active.

Publication


Featured researches published by Torsten Klengel.


Nature Neuroscience | 2013

Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions

Torsten Klengel; Divya Mehta; Christoph Anacker; Monika Rex-Haffner; Jens C. Pruessner; Carmine M. Pariante; Thaddeus W.W. Pace; Kristina B. Mercer; Helen S. Mayberg; Bekh Bradley; Charles B. Nemeroff; Florian Holsboer; Christine Heim; Kerry J. Ressler; Theo Rein; Elisabeth B. Binder

Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma–dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder.

Divya Mehta; Torsten Klengel; Karen N. Conneely; Alicia K. Smith; Andre Altmann; Thaddeus W.W. Pace; Monika Rex-Haffner; Anne Loeschner; Mariya Gonik; Kristina B. Mercer; Bekh Bradley; Bertram Müller-Myhsok; Kerry J. Ressler; Elisabeth B. Binder

Childhood maltreatment is likely to influence fundamental biological processes and engrave long-lasting epigenetic marks, leading to adverse health outcomes in adulthood. We aimed to elucidate the impact of different early environment on disease-related genome-wide gene expression and DNA methylation in peripheral blood cells in patients with posttraumatic stress disorder (PTSD). Compared with the same trauma-exposed controls (n = 108), gene-expression profiles of PTSD patients with similar clinical symptoms and matched adult trauma exposure but different childhood adverse events (n = 32 and 29) were almost completely nonoverlapping (98%). These differences on the level of individual transcripts were paralleled by the enrichment of several distinct biological networks between the groups. Moreover, these gene-expression changes were accompanied and likely mediated by changes in DNA methylation in the same loci to a much larger proportion in the childhood abuse (69%) vs. the non-child abuse-only group (34%). This study is unique in providing genome-wide evidence of distinct biological modifications in PTSD in the presence or absence of exposure to childhood abuse. The findings that nonoverlapping biological pathways seem to be affected in the two PTSD groups and that changes in DNA methylation appear to have a much greater impact in the childhood-abuse group might reflect differences in the pathophysiology of PTSD, in dependence of exposure to childhood maltreatment. These results contribute to a better understanding of the extent of influence of differences in trauma exposure on pathophysiological processes in stress-related psychiatric disorders and may have implications for personalized medicine.


Eukaryotic Cell | 2006

Cryptococcus neoformans Senses CO2 through the Carbonic Anhydrase Can2 and the Adenylyl Cyclase Cac1

Estelle Mogensen; Guilhem Janbon; James Chaloupka; Clemens Steegborn; Man Shun Fu; Frédérique Moyrand; Torsten Klengel; David S. Pearson; Michael A. Geeves; Jochen Buck; Lonny R. Levin; Fritz A. Mühlschlegel

ABSTRACT Cryptococcus neoformans, a fungal pathogen of humans, causes fatal meningitis in immunocompromised patients. Its virulence is mainly determined by the elaboration of a polysaccharide capsule surrounding its cell wall. During its life, C. neoformans is confronted with and responds to dramatic variations in CO2 concentrations; one important morphological change triggered by the shift from its natural habitat (0.033% CO2) to infected hosts (5% CO2) is the induction of capsule biosynthesis. In cells, CO2 is hydrated to bicarbonate in a spontaneous reaction that is accelerated by carbonic anhydrases. Here we show that C. neoformans contains two β-class carbonic anhydrases, Can1 and Can2. We further demonstrate that CAN2, but not CAN1, is abundantly expressed and essential for the growth of C. neoformans in its natural environment, where CO2 concentrations are limiting. Structural studies reveal that Can2 forms a homodimer in solution. Our data reveal Can2 to be the main carbonic anhydrase and suggest a physiological role for bicarbonate during C. neoformans growth. Bicarbonate directly activates the C. neoformans Cac1 adenylyl cyclase required for capsule synthesis. We show that this specific activation is optimal at physiological pH.


BMC Research Notes | 2012

Peripheral blood gene expression: it all boils down to the RNA collection tubes

Andreas Menke; Monika Rex-Haffner; Torsten Klengel; Elisabeth B. Binder; Divya Mehta

BackgroundGene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals.ResultsRNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × 10-5 and p = 1.95 × 10-3 in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA.ConclusionRNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes.


Neuropharmacology | 2014

The role of DNA methylation in stress-related psychiatric disorders

Torsten Klengel; Julius C. Pape; Elisabeth B. Binder; Divya Mehta

Epigenetic modifications in response to traumatic experience and stress are emerging as important factors in the long-term biological trajectories leading to stress-related psychiatric disorders, reflecting both environmental influences as well as individual genetic predisposition. In particular, recent evidence on DNA methylation changes within distinct genes and pathways but also on a genome-wide level provides new insights into the pathophysiology of stress related psychiatric disorders. This review summarizes current findings and concepts on DNA methylation changes in stress-related disorders with a focus on major depressive disorder and posttraumatic stress disorder (PTSD). We highlight studies of DNA methylation in animals and humans pertinent to these disorders, both focusing on candidate loci as well as genome-wide studies. We describe molecular mechanisms of how exposure to stress can induce long lasting changes in DNA methylation and how these may relate to the pathophysiology of depression and PTSD. We discuss data suggesting that DNA methylation, even in peripheral tissues, appears to be an informative reflection of environmental exposures on the genome and may have potential as a biomarker for the early prevention of stress-related disorders.


Circulation-cardiovascular Genetics | 2016

Epigenetic Signatures of Cigarette Smoking

Roby Joehanes; Allan C. Just; Riccardo E. Marioni; Luke C. Pilling; Lindsay M. Reynolds; Pooja R. Mandaviya; Weihua Guan; Tao Xu; Cathy E. Elks; Stella Aslibekyan; Hortensia Moreno-Macías; Jennifer A. Smith; Jennifer A. Brody; Radhika Dhingra; Paul Yousefi; James S. Pankow; Sonja Kunze; Sonia Shah; Allan F. McRae; Kurt Lohman; Jin Sha; Devin M. Absher; Luigi Ferrucci; Wei Zhao; Ellen W. Demerath; Jan Bressler; Megan L. Grove; Tianxiao Huan; Chunyu Liu; Michael M. Mendelson

Background—DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. Methods and Results—To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine–phosphate–guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1×10−7 (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1×10−7 (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs. Conclusions—Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.


Journal of Clinical Investigation | 2013

Accelerated neurodegeneration through chaperone-mediated oligomerization of tau

Laura J. Blair; Bryce A. Nordhues; Shannon E. Hill; K. Matthew Scaglione; John C. O’Leary; Sarah N. Fontaine; Leonid Breydo; Bo Zhang; Pengfei Li; Li Wang; Carl W. Cotman; Henry L. Paulson; Martin Muschol; Vladimir N. Uversky; Torsten Klengel; Elisabeth B. Binder; Rakez Kayed; Todd E. Golde; Nicole C. Berchtold; Chad A. Dickey

Aggregation of tau protein in the brain is associated with a class of neurodegenerative diseases known as tauopathies. FK506 binding protein 51 kDa (FKBP51, encoded by FKBP5) forms a mature chaperone complex with Hsp90 that prevents tau degradation. In this study, we have shown that tau levels are reduced throughout the brains of Fkbp5-/- mice. Recombinant FKBP51 and Hsp90 synergized to block tau clearance through the proteasome, resulting in tau oligomerization. Overexpression of FKBP51 in a tau transgenic mouse model revealed that FKBP51 preserved the species of tau that have been linked to Alzheimers disease (AD) pathogenesis, blocked amyloid formation, and decreased tangle load in the brain. Alterations in tau turnover and aggregate structure corresponded with enhanced neurotoxicity in mice. In human brains, FKBP51 levels increased relative to age and AD, corresponding with demethylation of the regulatory regions in the FKBP5 gene. We also found that higher FKBP51 levels were associated with AD progression. Our data support a model in which age-associated increases in FKBP51 levels and its interaction with Hsp90 promote neurotoxic tau accumulation. Strategies aimed at attenuating FKBP51 levels or its interaction with Hsp90 have the potential to be therapeutically relevant for AD and other tauopathies.


American Journal of Medical Genetics | 2015

DNA extracted from saliva for methylation studies of psychiatric traits: Evidence tissue specificity and relatedness to brain

Alicia K. Smith; Varun Kilaru; Torsten Klengel; Kristina B. Mercer; Bekh Bradley; Karen N. Conneely; Kerry J. Ressler; Elisabeth B. Binder

DNA methylation has become increasingly recognized in the etiology of psychiatric disorders. Because brain tissue is not accessible in living humans, epigenetic studies are most often conducted in blood. Saliva is often collected for genotyping studies but is rarely used to examine DNA methylation because the proportion of epithelial cells and leukocytes varies extensively between individuals. The goal of this study was to evaluate whether saliva DNA is informative for studies of psychiatric disorders. DNA methylation (HumanMethylation450 BeadChip) was assessed in saliva and blood samples from 64 adult African Americans. Analyses were conducted using linear regression adjusted for appropriate covariates, including estimated cellular proportions. DNA methylation from brain tissues (cerebellum, frontal cortex, entorhinal cortex, and superior temporal gyrus) was obtained from a publically available dataset. Saliva and blood methylation was clearly distinguishable though there was positive correlation overall. There was little correlation in CpG sites within relevant candidate genes. Correlated CpG sites were more likely to occur in areas of low CpG density (i.e., CpG shores and open seas). There was more variability in CpG sites from saliva than blood, which may reflect its heterogeneity. Finally, DNA methylation in saliva appeared more similar to patterns from each of the brain regions examined overall than methylation in blood. Thus, this study provides a framework for using DNA methylation from saliva and suggests that DNA methylation of saliva may offer distinct opportunities for epidemiological and longitudinal studies of psychiatric traits.


Genes, Brain and Behavior | 2013

Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression

Andreas Menke; Torsten Klengel; Jennifer Rubel; T. Brückl; Hildegard Pfister; Susanne Lucae; Manfred Uhr; Florian Holsboer; Elisabeth B. Binder

The FK506 binding protein 51 or FKBP5 has been implicated in the regulation of glucocorticoid receptor (GR) sensitivity, and genetic variants in this gene have been associated with mood and anxiety disorders. GR resistance and associated stress hormone dysregulation are among the most robust biological findings in major depression, the extent of which may be moderated by FKBP5 polymorphisms. FKBP5 mRNA expression in peripheral blood cells (baseline and following in vivo GR stimulation with 1.5 mg dexamethasone p.o.) was analyzed together with plasma cortisol, ACTH, dexamethasone levels and the FKBP5 polymorphism rs1360780 in 68 depressed patients and 87 healthy controls. We observed a significant (P = 0.02) interaction between disease status and FKBP5 risk allele carrier status (minor allele T) on GR-stimulated FKBP5 mRNA expression. Patients carrying the risk T allele, but not the CC genotype, showed a reduced induction of FKBP5 mRNA. This FKBP5 polymorphism by disease status interaction was paralleled by the extent of plasma cortisol and ACTH suppression following dexamethasone administration, with a reduced suppression only observed in depressed patients carrying the T allele. Only depressed patients carrying the FKBP5 rs1360780 risk allele showed significant GR resistance compared with healthy controls, as measured by dexamethasone-induced FKBP5 mRNA induction in peripheral blood cells and suppression of plasma cortisol and ACTH concentrations. This finding suggests that endocrine alterations in depressed patients are determined by genetic variants and may allow identification of specific subgroups.


Human Genetics | 2013

Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans

Yan V. Sun; Alicia K. Smith; Karen N. Conneely; Qiuzhi Chang; Weiyan Li; Alicia Lazarus; Jennifer A. Smith; Lynn M. Almli; Elisabeth B. Binder; Torsten Klengel; Dorthie Cross; Stephen T. Turner; Kerry J. Ressler; Sharon L.R. Kardia

Cigarette smoking is an environmental risk factor for many chronic diseases, and disease risk can often be managed by smoking control. Smoking can induce cellular and molecular changes, including epigenetic modification, but the short- and long-term epigenetic modifications caused by cigarette smoking at the gene level have not been well understood. Recent studies have identified smoking-related DNA methylation (DNAm) sites in Caucasians. To determine whether the same DNAm sites associate with smoking in African Americans, and to identify novel smoking-related DNAm sites, we conducted a methylome-wide association study of cigarette smoking using a discovery sample of 972 African Americans, and a replication sample of 239 African Americans with two array-based methods. Among 15 DNAm sites significantly associated with smoking after correction for multiple testing in our discovery sample, 5 DNAm sites are replicated in an independent cohort, and 14 sites in the replication sample have effects in the same direction as in the discovery sample. The top two smoking-related DNAm sites in F2RL3 (factor II receptor-like 3) and GPR15 (G-protein-coupled receptor 15) observed in African Americans are consistent with previous findings in Caucasians. The associations between the replicated DNAm sites and smoking remain significant after adjusting for genetic background. Despite the distinct genetic background between African Americans and Caucasians, the DNAm from the two ethnic groups shares common associations with cigarette smoking, which suggests a common molecular mechanism of epigenetic modification influenced by environmental exposure.

Collaboration


Dive into the Torsten Klengel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge