Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Torsten Vor is active.

Publication


Featured researches published by Torsten Vor.


Parasitology Research | 2011

Factors affecting patterns of tick parasitism on forest rodents in tick-borne encephalitis risk areas, Germany

Christian Kiffner; Torsten Vor; Peter Hagedorn; Matthias Niedrig; Ferdinand Rühe

Identifying factors affecting individual vector burdens is essential for understanding infectious disease systems. Drawing upon data of a rodent monitoring programme conducted in nine different forest patches in southern Hesse, Germany, we developed models which predict tick (Ixodes spp. and Dermacentor spp.) burdens on two rodent species Apodemus flavicollis and Myodes glareolus. Models for the two rodent species were broadly similar but differed in some aspects. Patterns of Ixodes spp. burdens were influenced by extrinsic factors such as season, unexplained spatial variation (both species), relative humidity and vegetation cover (A. flavicollis). We found support for the ‘body mass’ (tick burdens increase with body mass/age) and for the ‘dilution’ hypothesis (tick burdens decline with increasing rodent densities) and little support for the ‘sex-bias’ hypothesis (both species). Surprisingly, roe deer densities were not correlated with larvae counts on rodents. Factors influencing the mean burden did not significantly explain the observed dispersion of tick counts. Co-feeding aggregations, which are essential for tick-borne disease transmission, were mainly found in A. flavicollis of high body mass trapped in areas with fast increase in spring temperatures. Locally, Dermacentor spp. appears to be an important parasite on A. flavicollis and M. glareolus. Dermacentor spp. was rather confined to areas with higher average temperatures during the vegetation period. Nymphs of Dermacentor spp. mainly fed on M. glareolus and were seldom found on A. flavicollis. Whereas Ixodes spp. is the dominant tick genus in woodlands of our study area, the distribution and epidemiological role of Dermacentor spp. should be monitored closely.


Experimental and Applied Acarology | 2010

Tick burden on European roe deer (Capreolus capreolus)

Torsten Vor; Christian Kiffner; Peter Hagedorn; Matthias Niedrig; Ferdinand Rühe

In our study we assessed the tick burden on roe deer (Capreolus capreolus L.) in relation to age, physical condition, sex, deer density and season. The main objective was to find predictive parameters for tick burden. In September 2007, May, July, and September 2008, and in May and July 2009 we collected ticks on 142 culled roe deer from nine forest departments in Southern Hesse, Germany. To correlate tick burden and deer density we estimated deer density using line transect sampling that accounts for different detectability in March 2008 and 2009, respectively. We collected more than 8,600 ticks from roe deer heads and necks, 92.6% of which were Ixodes spp., 7.4% Dermacentor spp. Among Ixodes, 3.3% were larvae, 50.5% nymphs, 34.8% females and 11.4% males, with significant seasonal deviation. Total tick infestation was high, with considerable individual variation (from 0 to 270 ticks/deer). Adult tick burden was positively correlated with roe deer body indices (body mass, age, hind foot length). Significantly more nymphs were found on deer from forest departments with high roe deer density indices, indicating a positive correlation with deer abundance. Overall, tick burden was highly variable. Seasonality and large scale spatial characteristics appeared to be the most important factors affecting tick burden on roe deer.


Vector-borne and Zoonotic Diseases | 2011

Rodents as sentinels for the prevalence of tick-borne encephalitis virus.

Katharina Achazi; Daniel Růžek; Oliver Donoso-Mantke; Mathias Schlegel; Hanan Sheikh Ali; Mathias Wenk; Jonas Schmidt-Chanasit; Lutz Ohlmeyer; Ferdinand Rühe; Torsten Vor; Christian Kiffner; René Kallies; Rainer G. Ulrich; Matthias Niedrig

INTRODUCTION Tick-borne encephalitis virus (TBEV) causes one of the most important flavivirus infections of the central nervous system, affecting humans in Europe and Asia. It is mainly transmitted by the bite of an infected tick and circulates among them and their vertebrate hosts. Until now, TBE risk analysis in Germany has been based on the incidence of human cases. Because of an increasing vaccination rate, this approach might be misleading, especially in regions of low virus circulation. METHOD To test the suitability of rodents as a surrogate marker for virus spread, laboratory-bred Microtus arvalis voles were experimentally infected with TBEV and analyzed over a period of 100 days by real-time (RT)-quantitative polymerase chain reaction. Further, the prevalence of TBEV in rodents trapped in Brandenburg, a rural federal state in northeastern Germany with autochthonous TBE cases, was determined and compared with that in rodents from German TBE risk areas as well as TBE nonrisk areas. RESULTS In experimentally infected M. arvalis voles, TBEV was detectable in different organs for at least 3 months and in blood for 1 month. Ten percent of all rodents investigated were positive for TBEV. However, in TBE risk areas, the infection rate was higher compared with that of areas with only single human cases or of nonrisk areas. TBEV was detected in six rodent species: Apodemus agrarius, Apodemus flavicollis, Apodemus sylvaticus, Microtus agrestis, Microtus arvalis, and Myodes glareolus. M. glareolus showed a high infection rate in all areas investigated. DISCUSSION AND CONCLUSION The infection experiments proved that TBEV can be reliably detected in infected M. arvalis voles. These voles developed a persistent TBE infection without clinical symptoms. Further, the study showed that rodents, especially M. glareolus, are promising sentinels particularly in areas of low TBEV circulation.


Experimental and Applied Acarology | 2011

Attachment site selection of ticks on roe deer, Capreolus capreolus

Christian Kiffner; Christina Lödige; M. Alings; Torsten Vor; Ferdinand Rühe

The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May–August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.


Plant and Soil | 2012

Microbial-mediated feedbacks of leaf litter on invasive plant growth and interspecific competition

Kenneth J. Elgersma; Shen Yu; Torsten Vor; Joan G. Ehrenfeld

Background and AimsFeedbacks between plants and soil microbes can play an important role in competition between potential invaders and the resident community. However, the role of saprophytic soil microbes is poorly understood because research largely focuses on the role of specific soil-borne pathogens. Our aim was to examine the role of plant-saprophyte feedbacks in soil processes (decomposition and enzyme activities) and plant competition.MethodsWe preconditioned a common soil in microcosms by decomposing litter of four species; two exotic invasive species (Microstegium vimineum and Berberis thunbergii) and two native species (Viburnum acerifolium and Vaccinium corymbosum). We then replaced the litter with either the same species’ litter or a different species’ litter on the preconditioned soil. We measured the effect of preconditioning on subsequent litter decomposition, microbial community structure (phospholipid fatty acids) and function (soil enzyme activities and decomposition). We then grew Berberis and Viburnum seedlings in preconditioned soils under intraspecific and interspecific competition to determine whether litter preconditioning had a feedback effect on competition.ResultsChanges in microbial community structure during preconditioning persisted through time and altered subsequent soil enzyme activities and litter decomposition. These changes also affected the growth rate of two shrub species, but because both shrubs grew best in soil that previously contained Berberis litter, competition between these species was not directly affected.ConclusionsPlant litter creates a legacy that influences the future structure of the microbial community even after that litter is gone. This legacy effect has functional consequences on decomposition and plant growth, and could be an important but under-appreciated factor in soil and plant community ecology. Further study is needed to determine how these consequences affect plant community composition and invasibility.


International Journal of Health Geographics | 2010

Determinants of tick-borne encephalitis in counties of southern Germany, 2001-2008.

Christian Kiffner; Walter Zucchini; Philipp Schomaker; Torsten Vor; Peter Hagedorn; Matthias Niedrig; Ferdinand Rühe

BackgroundTick-borne encephalitis (TBE) virus can cause severe symptoms in humans. The incidence of this vector-borne pathogen in humans is characterised by spatial and temporal heterogeneity. To explain the variation in reported human TBE cases per county in southern Germany, we designed a time-lagged, spatially-explicit model that incorporates ecological, environmental, and climatic factors.ResultsWe fitted a logistic regression model to the annual counts of reported human TBE cases in each of 140 counties over an eight year period. The model controlled for spatial autocorrelation and unexplained temporal variation. The occurrence of human TBE was found to be positively correlated with the proportions of broad-leafed, mixed and coniferous forest cover. An index of forest fragmentation was negatively correlated with TBE incidence, suggesting that infection risk is higher in fragmented landscapes. The results contradict previous evidence regarding the relevance of a specific spring-time temperature regime for TBE epidemiology. Hunting bag data of roe deer (Capreolus capreolus) in the previous year was positively correlated with human TBE incidence, and hunting bag density of red fox (Vulpes vulpes) and red deer (Cervus elaphus) in the previous year were negatively correlated with human TBE incidence.ConclusionsOur approach suggests that a combination of landscape and climatic variables as well as host-species dynamics influence TBE infection risk in humans. The model was unable to explain some of the temporal variation, specifically the high counts in 2005 and 2006. Factors such as the exposure of humans to infected ticks and forest rodent population dynamics, for which we have no data, are likely to be explanatory factors. Such information is required to identify the determinants of TBE more reliably. Having records of TBE infection sites at a finer scale would also be necessary.


PLOS ONE | 2015

Regeneration Patterns of European Oak Species (Quercus petraea (Matt.) Liebl., Quercus robur L.) in Dependence of Environment and Neighborhood

Peter Annighöfer; Philip Beckschäfer; Torsten Vor; Christian Ammer

Quercus robur L. (pedunculate oak) and Quercus petraea (Matt.) Liebl. (sessile oak) are two European oak species of great economic and ecological importance. Even though both oaks have wide ecological amplitudes of suitable growing conditions, forests dominated by oaks often fail to regenerate naturally. The regeneration performance of both oak species is assumed to be subject to a variety of variables that interact with one another in complex ways. The novel approach of this research was to study the effect of many ecological variables on the regeneration performance of both oak species together and identify key variables and interactions for different development stages of the oak regeneration on a large scale in the field. For this purpose, overstory and regeneration inventories were conducted in oak dominated forests throughout southern Germany and paired with data on browsing, soil, and light availability. The study was able to verify the assumption that the occurrence of oak regeneration depends on a set of variables and their interactions. Specifically, combinations of site and stand specific variables such as light availability, soil pH and iron content on the one hand, and basal area and species composition of the overstory on the other hand. Also browsing pressure was related to oak abundance. The results also show that the importance of variables and their combinations differs among the development stages of the regeneration. Light availability becomes more important during later development stages, whereas the number of oaks in the overstory is important during early development stages. We conclude that successful natural oak regeneration is more likely to be achieved on sites with lower fertility and requires constantly controlling overstory density. Initially sufficient mature oaks in the overstory should be ensured. In later stages, overstory density should be reduced continuously to meet the increasing light demand of oak seedlings and saplings.


Medical and Veterinary Entomology | 2011

Body-mass or sex-biased tick parasitism in roe deer (Capreolus capreolus)? A GAMLSS approach.

Christian Kiffner; Christina Lödige; M. Alings; Torsten Vor; Ferdinand Rühe

Macroparasites feeding on wildlife hosts follow skewed distributions for which basic statistical approaches are of limited use. To predict Ixodes spp. tick burden on roe deer, we applied Generalized Additive Models for Location, Scale and Shape (GAMLSS) which allow incorporating a variable dispersion. We analysed tick burden of 78 roe deer, sampled in a forest region of Germany over a period of 20 months. Assuming a negative binomial error distribution and controlling for ambient temperature, we analysed whether host sex and body mass affected individual tick burdens. Models for larval and nymphal tick burden included host sex, with male hosts being more heavily infested than female ones. However, the influence of host sex on immature tick burden was associated with wide standard errors (nymphs) or the factor was marginally significant (larvae). Adult tick burden was positively correlated with host body mass. Thus, controlled for host body mass and ambient temperature, there is weak support for sex‐biased parasitism in this system. Compared with models which assume linear relationships, GAMLSS provided a better fit. Adding a variable dispersion term improved only one of the four models. Yet, the potential of modelling dispersion as a function of variables appears promising for larger datasets.


Biology and Fertility of Soils | 2002

Use of microcalorimetry to study microbial activity during the transition from oxic to anoxic conditions

Torsten Vor; Jens Dyckmans; Heiner Flessa; Friedrich Beese

Abstract. Microbial heat production is a nonspecific measure for microbial activity irrespective of O2 availability in soils. In a series of long-term batch microcalorimeter experiments with closed ampoules, we examined the microbial activity in glucose-amended soil aggregates from different soil depths of a clay forest soil during the transition from aerobic to anaerobic conditions. Furthermore, the influence of the soil aggregate size on the long-term metabolic heat production was examined. Heat output curves showed a distinct pattern for soil samples from different soil depths and aggregate sizes and led to the following conclusions: 1. Microbial biomass and microbial activity strongly decreased with increasing soil depth as well as increasing soil aggregate size despite relatively constant organic C concentrations. 2. The transition from aerobic to anaerobic conditions led to a considerable drop in microbial activity. However, based on the energy balance, 10–26% of the heat production during the aerobic phase is attributable to anoxic or partly anoxic metabolism. 3. After O2 exhaustion, a lag phase of low but constant heat output was observed, followed by a peak of anaerobic metabolic activity. Heat production during the lag phase was hypothesised to be an indicator for the biomass of facultatively anaerobic microorganisms in the soil.


Medical and Veterinary Entomology | 2012

Determinants of tick-borne encephalitis virus antibody presence in roe deer (Capreolus capreolus) sera

Christian Kiffner; Torsten Vor; Peter Hagedorn; Matthias Niedrig; Ferdinand Rühe

In order to identify variables associated with the presence of the tick‐borne encephalitis (TBE) virus, we conducted a serological survey of roe deer [Capreolus capreolus (Artiodactyla: Cervidae, Linnaeus 1758)] in three forest districts of southern Hesse, Germany. Overall, 24 out of 105 (22.9%) of the sera were positive (≥1 : 10 plaque reduction neutralization test). Using a logistic regression approach, we found that unexplained spatial variation, indexed roe deer density (positive correlation), hind foot length of the tested roe deer (positive correlation) and infestation with female Ixodes spp. ticks (negative correlation) predicted the probability of TBE virus antibody presence in individual roe deer sera. Spring temperature increase and host sex were rejected as explanatory variables. We found considerable differences in TBE virus antibody seroprevalence (50.0% vs. 17.6%) between two forest districts located in the same county; this finding questions the current county‐resolution of public health recordings. Given the high seroprevalence of roe deer and the considerable explanatory power of our model, our approach appears suitable to delineate science‐based risk maps at a smaller spatial scale and to abandon the current human incidence per county criterion. Importantly, using roe deer as sentinels would eliminate the inherent bias of risk maps based on human incidence (varying levels of immunization and exposure of humans).

Collaboration


Dive into the Torsten Vor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Na Lin

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anke Benten

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge