Tory A. Hendry
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tory A. Hendry.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Yin Long Qiu; Libo Li; Bin Wang; Zhi-Duan Chen; Volker Knoop; Milena Groth-Malonek; Olena Dombrovska; Jungho Lee; Livija Kent; Joshua S. Rest; George F. Estabrook; Tory A. Hendry; David W. Taylor; Christopher M. Testa; Mathew Ambros; Barbara Crandall-Stotler; R. Joel Duff; Michael Stech; Wolfgang Frey; Dietmar Quandt; Charles C. Davis
Phylogenetic relationships among the four major lineages of land plants (liverworts, mosses, hornworts, and vascular plants) remain vigorously contested; their resolution is essential to our understanding of the origin and early evolution of land plants. We analyzed three different complementary data sets: a multigene supermatrix, a genomic structural character matrix, and a chloroplast genome sequence matrix, using maximum likelihood, maximum parsimony, and compatibility methods. Analyses of all three data sets strongly supported liverworts as the sister to all other land plants, and analyses of the multigene and chloroplast genome matrices provided moderate to strong support for hornworts as the sister to vascular plants. These results highlight the important roles of liverworts and hornworts in two major events of plant evolution: the water-to-land transition and the change from a haploid gametophyte generation-dominant life cycle in bryophytes to a diploid sporophyte generation-dominant life cycle in vascular plants. This study also demonstrates the importance of using a multifaceted approach to resolve difficult nodes in the tree of life. In particular, it is shown here that densely sampled taxon trees built with multiple genes provide an indispensable test of taxon-sparse trees inferred from genome sequences.
International Journal of Plant Sciences | 2007
Yin Long Qiu; Libo Li; Bin Wang; Zhi-Duan Chen; Olena Dombrovska; Jungho Lee; Livija Kent; Rui-Qi Li; Richard W. Jobson; Tory A. Hendry; David W. Taylor; Christopher M. Testa; Mathew Ambros
Nucleotide sequences of seven chloroplast (atpB and rbcL, SSU and LSU rDNAs), mitochondrial (atp1, LSU rDNA), and nuclear (18S rDNA) genes from 192 land plants and their algal relatives were analyzed using maximum likelihood and maximum parsimony methods. Liverworts, mosses, hornworts, lycophytes, monilophytes (ferns), seed plants, and angiosperms all represent strongly supported monophyletic groups. Three bryophyte lineages form a paraphyletic group to vascular plants, with liverworts representing the sister to all other land plants and hornworts being sister to vascular plants. Lycophytes are sister to all other vascular plants, which are divided into two clades, one being monilophytes, which include Equisetum, Psilotaceae‐Ophioglossaceae, Marattiaceae, and leptosporangiate ferns, and the other being seed plants. Relationships among the monilophyte lineages remain unresolved. Within seed plants, extant gymnosperms form a moderately supported clade in which Gnetales are related to conifers. This clade is sister to angiosperms. Most of the relationships among all major lineages of nonflowering land plants are supported by bootstrap values of 75% or higher, except those among basal monilophyte lineages and among some gymnosperm lineages, probably because of extinctions. The closest algal relative of land plants is Characeae, and this relationship is well supported. Several methodological issues on reconstructing large, deep phylogenies are also discussed.
Journal of Systematics and Evolution | 2010
Yin Long Qiu; Libo Li; Bin Wang; Jiayu Xue; Tory A. Hendry; Rui-Qi Li; Joseph W. Brown; Yang Liu; Geordan T. Hudson; Zhi-Duan Chen
Abstract An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atp1, matR, nad5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales–Oxalidales–Malpighiales) clade is sister to malvids (or rosid II), instead of to the nitrogen‐fixing clade as found in all previous large‐scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade. This study shows that the mitochondrial genes are informative markers for resolving relationships among genera, families, or higher rank taxa across angiosperms. The low substitution rates and low homoplasy levels of the mitochondrial genes relative to the chloroplast genes, as found in this study, make them particularly useful for reconstructing ancient phylogenetic relationships. A mitochondrial gene‐based angiosperm phylogeny provides an independent and essential reference for comparison with hypotheses of angiosperm phylogeny based on chloroplast genes, nuclear genes, and non‐molecular data to reconstruct the underlying organismal phylogeny.
Taxon | 2006
Yin Long Qiu; Libo Li; Tory A. Hendry; Rui-Qi Li; David W. Taylor; Michael J. Issa; Alexander J. Ronen; Mona L. Vekaria; Adam M. White
Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attraction artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported relationships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of substitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolving deep relationships.
Applied and Environmental Microbiology | 2014
Tory A. Hendry; Martha S. Hunter; David A. Baltrus
ABSTRACT Facultative endosymbionts can benefit insect hosts in a variety of ways, including context-dependent roles, such as providing defense against pathogens. The role of some symbionts in defense may be overlooked, however, when pathogen infection is transient, sporadic, or asymptomatic. The facultative endosymbiont Rickettsia increases the fitness of the sweet potato whitefly (Bemisia tabaci) in some populations through mechanisms that are not yet understood. In this study, we investigated the role of Rickettsia in mediating the interaction between the sweet potato whitefly and Pseudomonas syringae, a common environmental bacterium, some strains of which are pathogenic to aphids. Our results show that P. syringae multiplies within whiteflies, leading to host death, and that whiteflies infected with Rickettsia show a decreased rate of death due to P. syringae. Experiments using plants coated with P. syringae confirmed that whiteflies can acquire the bacteria at a low rate while feeding, leading to increased mortality, particularly when the whiteflies are not infected with Rickettsia. These results suggest that P. syringae may affect whitefly populations in nature and that Rickettsia can ameliorate this effect. This study highlights the possible importance of interactions among opportunistic environmental pathogens and endosymbionts of insects.
Ecology Letters | 2015
Michael J. Sheehan; Carlos A. Botero; Tory A. Hendry; Brian E. Sedio; Jennifer M. Jandt; Susan Weiner; Amy L. Toth; Elizabeth A. Tibbetts
Ecological constraints on independent breeding are recognised as major drivers of cooperative breeding across diverse lineages. How the prevalence and degree of cooperative breeding relates to ecological variation remains unresolved. Using a large data set of cooperative nesting in Polistes wasps we demonstrate that different aspects of cooperative breeding are likely to be driven by different aspects of climate. Whether or not a species forms cooperative groups is associated with greater short-term temperature fluctuations. In contrast, the number of cooperative foundresses increases in more benign environments with warmer, wetter conditions. The same data set reveals that intraspecific responses to climate variation do not mirror genus-wide trends and instead are highly heterogeneous among species. Collectively these data suggest that the ecological drivers that lead to the origin or loss of cooperation are different from those that influence the extent of its expression within populations.
Journal of Bacteriology | 2011
Henryk Urbanczyk; Yoshitoshi Ogura; Tory A. Hendry; Alison L. Gould; Naomi Kiwaki; Joshua T. Atkinson; Tetsuya Hayashi; Paul V. Dunlap
Photobacterium mandapamensis is one of three luminous Photobacterium species able to form species-specific bioluminescent symbioses with marine fishes. Here, we present the draft genome sequence of P. mandapamensis strain svers.1.1, the bioluminescent symbiont of the cardinal fish Siphamia versicolor, the first genome of a symbiotic, luminous Photobacterium species to be sequenced. Analysis of the sequence provides insight into differences between P. mandapamensis and other luminous and symbiotic bacteria in genes involved in quorum-sensing regulation of light production and establishment of symbiosis.
The Bryologist | 2007
Tory A. Hendry; Bin Wang; Ya Yang; E. Christine Davis; John E. Braggins; Rudolf M. Schuster; Yin Long Qiu
Abstract Neogrollea notabilis, Jackiella curvata, Goebelobryum unguiculatum and Herzogianthus vaginatus are four leafy liverworts found in New Zealand whose phylogenetic positions are uncertain. To determine their positions, we sequenced three chloroplast genes, atpB, rbcL and rps4, from these taxa, compiled a 3-gene data set for 78 taxa representing all major lineages of liverworts and analyzed the data using both maximum likelihood and parsimony methods. Our results confirmed placement of Neogrollea within the Lepidoziaceae, but did not support the creation of the suborder Neogrollineae Engel & Braggins. The monogeneric family status of Jackiella was supported by our study, but the family is not related to the Adelanthaceae, Cephaloziaceae or Cephaloziellaceae. Instead, our results suggest that it should be included in a large marsupium-bearing clade of liverworts. Goebelobryum unguiculatum is confirmed to be a member of the Acrobolbaceae. Finally, our study showed that Herzogianthus was unrelated to Chaetophyllopsis, and should be taken out of Chaetophyllopsidaceae and placed in its own new family. The genus is perhaps related to Ptilidium and Neotrichocolea, which are positioned between the simple thalloid and leafy liverworts.
Molecular Phylogenetics and Evolution | 2011
Tory A. Hendry; Paul V. Dunlap
Flashlight fishes (Beryciformes: Anomalopidae) harbor luminous symbiotic bacteria in subocular light organs and use the bacterial light for predator avoidance, feeding, and communication. Despite many attempts anomalopid symbionts have not been brought into laboratory culture, which has restricted progress in understanding their phylogenetic relationships with other luminous bacteria, identification of the genes of their luminescence system, as well as the nature of their symbiotic interactions with their fish hosts. To begin addressing these issues, we used culture-independent analysis of the bacteria symbiotic with the anomalopid fish, Anomalops katoptron, to characterize the phylogeny of the bacteria and to identify the genes of their luminescence system including those involved in the regulation of luminescence. Analysis of the 16S rRNA, atpA, gapA, gyrB, pyrH, recA, rpoA, and topA genes resolved the A. katoptron symbionts as a clade nested within and deeply divergent from other members of Vibrionaceae. The bacterial luminescence (lux) genes were identified as a contiguous set (luxCDABEG), as found for the lux operons of other luminous bacteria. Phylogenetic analysis based on the lux genes confirmed the housekeeping gene phylogenetic placement. Furthermore, genes flanking the lux operon in the A. katoptron symbionts differed from those flanking lux operons of other genera of luminous bacteria. We therefore propose the candidate name Candidatus Photodesmus (Greek: photo = light, desmus = servant) katoptron for the species of bacteria symbiotic with A. katoptron. Results of a preliminary genomic analysis for genes regulating luminescence in other bacteria identified only a Vibrio harveyi-type luxR gene. These results suggest that expression of the luminescence system might be continuous in P. katoptron.
Royal Society Open Science | 2016
Tory A. Hendry; Kelley J. Clark; David A. Baltrus
Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.