Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshiki Takemoto is active.

Publication


Featured researches published by Toshiki Takemoto.


Lung Cancer | 2016

Clinical and pathologic features of lung cancer expressing programmed cell death ligand 1 (PD-L1).

Masaki Shimoji; Shigeki Shimizu; Katsuaki Sato; Kenichi Suda; Yoshihisa Kobayashi; Kenji Tomizawa; Toshiki Takemoto; Tetsuya Mitsudomi

BACKGROUND Programmed cell death 1 (PD-1) negatively regulates antigen receptor signaling upon binding by either of its ligands, programmed cell death ligand 1 or 2 (PD-L1/2). Blockade of this interaction with either PD-1 or PD-L1 antibodies has been successful in the treatment of human cancer, especially melanoma and non-small cell lung cancer. PD-L1 expression has been proposed as a predictor of tumor response. However, the relationships between PD-L1 expression and various clinicopathological characteristics remain unclear. MATERIALS AND METHODS PD-L1 expression was examined in 220 non-small cell lung cancer specimens that were consecutively resected at our hospital after validating the E1L3N antibody immunohistochemical assay by comparing IHC and RT-PCR data for lung cancer cell lines. We evaluated the relationships between PD-L1 positivity, several clinical factors and the immunohistochemical expression of epithelial-mesenchymal transition (EMT), cancer stem cell and proliferative markers. RESULTS PD-L1 was expressed in 22% of lung adenocarcinomas and 60% of squamous cell lung cancers. There was no significant association between PD-L1 expression and clinicopathological features in squamous cell lung cancer. However, in patients with lung adenocarcinoma, PD-L1 expression was significantly correlated with solid subtype histology, vimentin expression, increased Ki-67 labeling index and poor prognosis by multivariate analysis. CONCLUSION PD-L1 expression was associated with high proliferative activity and the EMT phenotype in adenocarcinoma but not in squamous cell carcinoma of the lung. PD-L1 expression was a significant poor prognostic factor in patients with lung adenocarcinoma.


Clinical Cancer Research | 2015

EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs.

Yoshihisa Kobayashi; Yosuke Togashi; Yasushi Yatabe; Hiroshi Mizuuchi; Park Jangchul; Chiaki Kondo; Masaki Shimoji; Katsuaki Sato; Kenichi Suda; Kenji Tomizawa; Toshiki Takemoto; Toyoaki Hida; Kazuto Nishio; Tetsuya Mitsudomi

Purpose: Lung cancers harboring common EGFR mutations respond to EGFR tyrosine kinase inhibitors (TKI), whereas exon 20 insertions (Ins20) are resistant to them. However, little is known about mutations in exon 18. Experimental Design: Mutational status of lung cancers between 2001 and 2015 was reviewed. Three representative mutations in exon 18, G719A, E709K, and exon 18 deletion (Del18: delE709_T710insD) were retrovirally introduced into Ba/F3 and NIH/3T3 cells. The 90% inhibitory concentrations (IC90s) of first-generation (1G; gefitinib and erlotinib), second-generation (2G; afatinib, dacomitinib, and neratinib), and third-generation TKIs (3G; AZD9291 and CO1686) were determined. Results: Among 1,402 EGFR mutations, Del19, L858R, and Ins20 were detected in 40%, 47%, and 4%, respectively. Exon 18 mutations, including G719X, E709X, and Del18, were present in 3.2%. Transfected Ba/F3 cells grew in the absence of IL3, and NIH/3T3 cells formed foci with marked pile-up, indicating their oncogenic abilities. IC90s of 1G and 3G TKIs in G719A, E709K, and Del18 were much higher than those in Del19 (by >11–50-fold), whereas IC90s of afatinib were only 3- to 7-fold greater than those for Del19. Notably, cells transfected with G719A and E709K exhibited higher sensitivity to neratinib (by 5–25-fold) than those expressing Del19. Patients with lung cancers harboring G719X exhibited higher response rate to afatinib or neratinib (∼80%) than to 1G TKIs (35%–56%) by compilation of data in the literature. Conclusions: Lung cancers harboring exon 18 mutations should not be overlooked in clinical practice. These cases can be best treated with afatinib or neratinib, although the currently available in vitro diagnostic kits cannot detect all exon 18 mutations. Clin Cancer Res; 21(23); 5305–13. ©2015 AACR.


International Journal of Cancer | 2014

The insulin-like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor

Kenichi Suda; Hiroshi Mizuuchi; Katsuaki Sato; Toshiki Takemoto; Takuya Iwasaki; Tetsuya Mitsudomi

Epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitor (TKI) therapy often provides a dramatic response in lung cancer patients with EGFR mutations. In addition, moderate clinical efficacy of the EGFR‐TKI, erlotinib, has been shown in lung cancer patients with the wild‐type EGFR. Numerous molecular mechanisms that cause acquired resistance to EGFR‐TKIs have been identified in lung cancers with the EGFR mutations; however, few have been reported in lung cancers with the wild‐type EGFR. We used H358 lung adenocarcinoma cells lacking EGFR mutations that showed modest sensitivity to erlotinib. The H358 cells acquired resistance to erlotinib via chronic exposure to the drug. The H358 erlotinib‐resistant (ER) cells do not have a secondary EGFR mutation, neither MET gene amplification nor PTEN downregulation; these have been identified in lung cancers with the EGFR mutations. From comprehensive screening of receptor tyrosine kinase phosphorylation, we observed increased phosphorylation of insulin‐like growth factor 1 receptor (IGF1R) in H358ER cells compared with parental H358 cells. H358ER cells responded to combined therapy with erlotinib and NVP‐AEW541, an IGF1R‐TKI. Our results indicate that IGF1R activation is a molecular mechanism that confers acquired resistance to erlotinib in lung cancers with the wild‐type EGFR.


Cancer Science | 2016

Oncogene swap as a novel mechanism of acquired resistance to epidermal growth factor receptor‐tyrosine kinase inhibitor in lung cancer

Hiroshi Mizuuchi; Kenichi Suda; Isao Murakami; Kazuko Sakai; Katsuaki Sato; Yoshihisa Kobayashi; Masaki Shimoji; Masato Chiba; Yuichi Sesumi; Kenji Tomizawa; Toshiki Takemoto; Yoshitaka Sekido; Kazuto Nishio; Tetsuya Mitsudomi

Mutant selective epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs), such as rociletinib and AZD9291, are effective for tumors with T790M secondary mutation that become refractory to first‐generation EGFR‐TKI. However, acquired resistance to these prospective drugs is anticipated considering the high adaptability of cancer cells and the mechanisms remain largely obscure. Here, CNX‐2006 (tool compound of rociletinib) resistant sublines were established by chronic exposure of HCC827EPR cells harboring exon 19 deletion and T790M to CNX‐2006. Through the analyses of these resistant subclones, we identified two resistant mechanisms accompanied by MET amplification. One was bypass signaling by MET amplification in addition to T790M, which was inhibited by the combination of CNX‐2006 and MET‐TKI. Another was loss of amplified EGFR mutant allele including T790M while acquiring MET amplification. Interestingly, MET‐TKI alone was able to overcome this resistance, suggesting that oncogenic dependence completely shifted from EGFR to MET. We propose describing this phenomenon as an “oncogene swap.” Furthermore, we analyzed multiple lesions from a patient who died of acquired resistance to gefitinib, then found a clinical example of an oncogene swap in which the EGFR mutation was lost and a MET gene copy was gained. In conclusion, an “oncogene swap” from EGFR to MET is a novel resistant mechanism to the EGFR‐TKI. This novel mechanism should be considered in order to avoid futile inhibition of the original oncogene.


Lung Cancer | 2017

Effect of dasatinib on EMT-mediated-mechanism of resistance against EGFR inhibitors in lung cancer cells

Yuichi Sesumi; Kenichi Suda; Hiroshi Mizuuchi; Yoshihisa Kobayashi; Katsuaki Sato; Masato Chiba; Masaki Shimoji; Kenji Tomizawa; Toshiki Takemoto; Tetsuya Mitsudomi

OBJECTIVE The epithelial to mesenchymal transition (EMT) is associated with acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in certain non-small cell lung cancers that harbor EGFR mutations. Because no currently available drugs specifically kill cancer cells via EMT, novel treatment strategies that overcome or prevent EMT are needed. A recent report suggested that dasatinib (an ABL/Src kinase inhibitor) inhibits EMT induced by transforming growth factor (TGF)-beta in lung cancer cells (Wilson et al., 2014). In this study, we analyzed effects of dasatinib on the resistance mechanism in HCC4006 cells, which tend to acquire resistance to EGFR-TKIs via EMT. MATERIALS AND METHODS Sensitivity to dasatinib in HCC4006 and HCC4006 erlotinib-resistant (ER) cells with an EMT phenotype was analyzed. HCC4006 cells acquired resistance against the combination of erlotinib and dasatinib (HCC4006EDR) following chronic treatment with these drugs. The expression of EMT markers and the resistance mechanism were analyzed. RESULTS Short-term or long-term treatment with dasatinib did not reverse EMT in HCC4006ER. In contrast, HCC4006EDR cells maintained an epithelial phenotype, and the mechanism underlying resistance to erlotinib plus dasatinib combination therapy was attributable to a T790M secondary mutation. HCC4006EDR cells, but not HCC4006ER cells, were highly sensitive to a third-generation EGFR-TKI, osimertinib. CONCLUSIONS Although dasatinib monotherapy did not reverse EMT in HCC4006ER cells, preemptive combination treatment with erlotinib and dasatinib prevented the emergence of acquired resistance via EMT, and led to the emergence of T790M. Our results indicate that preemptive combination therapy may be a promising strategy to prevent the emergence of EMT-mediated resistance.


Molecular Cancer Therapeutics | 2017

Characterization of EGFR T790M, L792F, and C797S mutations as mechanisms of acquired resistance to afatinib in lung cancer

Yoshihisa Kobayashi; Koichi Azuma; Hiroki Nagai; Young Hak Kim; Yosuke Togashi; Yuichi Sesumi; Masato Chiba; Masaki Shimoji; Katsuaki Sato; Kenji Tomizawa; Toshiki Takemoto; Kazuto Nishio; Tetsuya Mitsudomi

Lung cancers harboring common EGFR mutations respond to EGFR tyrosine kinase inhibitors (TKI). We previously reported that tumors with exon 18 mutations are particularly sensitive to irreversible second-generation (2G) afatinib compared with first-generation TKIs (1G-TKI). However, data on the mechanisms of acquired resistance to afatinib are limited. We established afatinib-resistant cells by transfecting Ba/F3 cells with common or exon 18 (G719A and Del18) mutations and subjecting them to chronic exposure to increasing concentrations of afatinib. Afatinib-resistant clones were separately established through N-ethyl-N-nitrosourea (ENU) mutagenesis and exposure to fixed concentrations of afatinib. Rebiopsy samples from patients whose tumors acquired resistance to afatinib were analyzed. Afatinib-resistant cells with Del19, L858R, or G719A developed T790M, whereas those with Del18 acquired novel L792F mutation. ENU mutagenesis screening established 84 afatinib-resistant clones. All Del19 clones and most of the other clones acquired only T790M. However, C797S occurred in subsets of L858R, G719A, and Del18 clones. In addition, subsets of Del18 clones acquired L792F. C797S-acquired cells were sensitive to 1G erlotinib. L792F demonstrated intermediate resistance between T790M and C797S to both 1G- and 3G-TKIs, whereas L792F was the least resistant to 2G-TKIs, particularly dacomitinib. Chronic exposure of Del18 + L792F cells to dacomitinib induced additional T790M. T790M was detected in one of four clinical samples. In conclusion, L792F and C797S, in addition to the major T790M, can develop in afatinib-resistant cells particularly using a low dose of afatinib, and these minor mutations appear to exhibit sensitivity to dacomitinib and erlotinib, respectively. These secondary mutations should be tested in clinical practice. Mol Cancer Ther; 16(2); 357–64. ©2016 AACR. See related article by Talbert et al., p. 344


Lung Cancer | 2014

CRKL amplification is rare as a mechanism for acquired resistance to kinase inhibitors in lung cancers with epidermal growth factor receptor mutation

Kenichi Suda; Hiroshi Mizuuchi; Isao Murakami; Hidetaka Uramoto; Fumihiro Tanaka; Katsuaki Sato; Toshiki Takemoto; Takuya Iwasaki; Yoshitaka Sekido; Yasushi Yatabe; Tetsuya Mitsudomi

OBJECTIVES Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) often provide dramatic responses in lung cancer patients with somatic EGFR mutation. However, acquired resistance to the drugs usually emerges within a few years. EGFR T790M secondary mutation, MET gene amplification, and transformation to small cell lung cancer are well-validated mechanisms that underlie acquisition of resistance to EGFR-TKIs. In addition, many molecular aberrations have been reported as candidates for mechanisms of acquired resistance to EGFR-TKIs. Amplification of the CRKL gene was reportedly observed in 1 of 11 lung cancer patients with EGFR mutations who acquired resistance to EGFR-TKI. This study is the first report, to our knowledge, that validated the role of CRKL gene amplification as a mechanism for acquisition of resistance to EGFR-TKIs. MATERIALS AND METHODS We analyzed CRKL gene copy numbers, using a quantitative real-time PCR method, in 2 in vitro acquired-resistance cell-line models: 11 clinical samples from patients who developed acquired resistance to EGFR-TKIs, and 39 tumor specimens obtained from 7 autopsy patients whose cancers acquired resistance to EGFR-TKIs. Mutational status of EGFR codon 790 and copy numbers for the MET gene were also determined. RESULTS AND CONCLUSION In analysis for in vitro models, CRKL gene copy numbers were identical between EGFR-TKI-sensitive parental cells and their acquired resistant descendant cells. In addition, we found no clinical tumor specimens with acquired EGFR-TKI resistance to harbor amplified CRKL genes. These results indicate that CRKL gene amplification is rare in acquisition of resistance to EGFR-TKIs in lung cancer patients with EGFR mutations.


Respiratory investigation | 2014

Recent evidence, advances, and current practices in surgical treatment of lung cancer

Kenichi Suda; Katsuaki Sato; Hiroshi Mizuuchi; Yoshihisa Kobayashi; Masaki Shimoji; Kenji Tomizawa; Toshiki Takemoto; Takuya Iwasaki; Masahiro Sakaguchi; Tetsuya Mitsudomi

In the last 10-15 years, strategies and modalities of lung cancer treatment have changed dramatically. Meanwhile, the treatment objectives, the lung cancers themselves, have also changed, probably owing to early detection by computed tomography and aging of the population. In particular, the proportions of smaller lung cancers, lung adenocarcinomas with ground-glass opacity, and lung cancers in older patients are increasing. Along with these changes, surgeons have innovated and evaluated novel procedures for pulmonary resection. These include the application of minimally invasive surgical techniques, such as video-assisted thoracoscopic surgery (VATS) and robotic surgery, and sub-lobar resection, such as wedge resection and segmentectomy, for small peripheral lung cancers. Currently, VATS has gained wide acceptance and several institutions in Japan have started using robotic surgery for lung cancers. Two important clinical trials of sub-lobar resection for small peripheral lung cancers are now underway in Japan. In addition, surgery itself is of growing importance in lung cancer treatment. In particular, recent evidence supports the use of surgery in strictly selected patients with locally advanced disease, lung cancers with N2 lymph node metastases, small cell lung cancers, recurrent oligo-metastasis after pulmonary resection, or relapsed tumors after drug treatment. Surgical treatment also provides abundant tumor samples for molecular analysis, which can be used for drug selection in the adjuvant setting or after disease relapse. In the era of personalized treatment, surgery is still one of the most important treatment modalities to combat lung cancer.


PLOS ONE | 2016

Clinical, Pathological, and Molecular Features of Lung Adenocarcinomas with AXL Expression

Katsuaki Sato; Kenichi Suda; Shigeki Shimizu; Kazuko Sakai; Hiroshi Mizuuchi; Kenji Tomizawa; Toshiki Takemoto; Kazuto Nishio; Tetsuya Mitsudomi

The receptor tyrosine kinase AXL is a member of the Tyro3-Axl-Mer receptor tyrosine kinase subfamily. AXL affects several cellular functions, including growth and migration. AXL aberration is reportedly a marker for poor prognosis and treatment resistance in various cancers. In this study, we analyzed clinical, pathological, and molecular features of AXL expression in lung adenocarcinomas (LADs). We examined 161 LAD specimens from patients who underwent pulmonary resections. When AXL protein expression was quantified (0, 1+, 2+, 3+) according to immunohistochemical staining intensity, results were 0: 35%; 1+: 20%; 2+: 37%; and 3+: 7% for the 161 samples. AXL expression status did not correlate with clinical features, including smoking status and pathological stage. However, patients whose specimens showed strong AXL expression (3+) had markedly poorer prognoses than other groups (P = 0.0033). Strong AXL expression was also significantly associated with downregulation of E-cadherin (P = 0.025) and CD44 (P = 0.0010). In addition, 9 of 12 specimens with strong AXL expression had driver gene mutations (6 with EGFR, 2 with KRAS, 1 with ALK). In conclusion, we found that strong AXL expression in surgically resected LADs was a predictor of poor prognosis. LADs with strong AXL expression were characterized by mesenchymal status, higher expression of stem-cell-like markers, and frequent driver gene mutations.


BioMed Research International | 2014

Prognostic Implication of Predominant Histologic Subtypes of Lymph Node Metastases in Surgically Resected Lung Adenocarcinoma

Kenichi Suda; Katsuaki Sato; Shigeki Shimizu; Kenji Tomizawa; Toshiki Takemoto; Takuya Iwasaki; Masahiro Sakaguchi; Tetsuya Mitsudomi

The International Association for the Study of Lung Cancer, American Thoracic Society, and European Respiratory Society (IASLC/ATS/ERS) proposed a new classification for lung adenocarcinoma (AD) based on predominant histologic subtypes, such as lepidic, papillary, acinar, solid, and micropapillary; this system reportedly reflects well outcomes of patients with surgically resected lung AD. However, the prognostic implication of predominant histologic subtypes in lymph nodes metastases is unclear so far. In this study, we compared predominant subtypes between primary lung tumors and lymph node metastatic lesions in 24 patients with surgically treated lung adenocarcinoma with lymph node metastases. Additionally, we analyzed prognostic implications of these predominant histologic subtypes. We observed several discordance patterns between predominant subtypes in primary lung tumors and lymph node metastases. Concordance rates were 22%, 64%, and 100%, respectively, in papillary-, acinar-, and solid-predominant primary lung tumors. We observed that the predominant subtype in the primary lung tumor (HR 12.7, P = 0.037), but not that in lymph node metastases (HR 0.18, P = 0.13), determines outcomes in patients with surgically resected lung AD with lymph node metastases.

Collaboration


Dive into the Toshiki Takemoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge