Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshinori Mori is active.

Publication


Featured researches published by Toshinori Mori.


Physical Chemistry Chemical Physics | 1999

What are the important factors determining the state of copper ion on various supports? Analysis using spectroscopic methods and adsorption calorimetry

Yasushige Kuroda; Toshinori Mori; Yuzo Yoshikawa; Shigeharu Kittaka; Ryotaro Kumashiro; Mahiko Nagao

The important factors that determine the state of copper ion supported on the SiO2·Al2O3, SiO2 and ZSM-5 samples have been elucidated by using various spectroscopic techniques and adsorption calorimetry. When CO was adsorbed on the copper ion supported SiO2·Al2O3 (Cu/SiO2·Al2O3) sample or the copper ion exchanged ZSM-5 (CuZSM-5) sample which had been evacuated at 873 K in advance, a band was observed at around 2155 cm-1 which can be assigned to the CO species adsorbed onto the monovalent copper ion in these samples. In the case of CO adsorption on the copper ion deposited SiO2 (Cu/SiO2) sample, the band due to the adsorbed CO species appeared at 2132 cm-1. The differential heat of adsorption (Hd) of CO on Cu/SiO2·Al2O3 gave a value of ca. 100 kJ mol-1 at the initial adsorption stage and it gradually decreased with increasing amount adsorbed. The same relationship in the Hd–νCO (wavenumber of absorption band due to the C–O stretching vibration) plots was observed in the systems of Cu/SiO2·Al2O3–CO and CuZSM-5–CO, which indicates that the same σ bonding interaction is operative in these systems. In the case of CO adsorption on the Cu/SiO2 sample, the amount adsorbed is too small to get meaningful values of the adsorption heat for the discussion of the bonding nature between the copper ions and CO molecules, and we speculated that the same σ-bonding interaction is operative. The existence of the Bronsted acid sites on the original proton-type SiO2·Al2O3 and ZSM-5 samples was confirmed by the IR spectra using CO as a probe molecule and by the measurement of solid NMR spectra. These data provide an explanation for the appearance of an IR band (2155 cm-1) due to the CO species adsorbed on the Cu/SiO2·Al2O3 and CuZSM-5 samples. The existence of Bronsted acid sites, due to the existence of Al in the lattice, can be regarded as an important factor in their role as catalysts in the various reactions. The state of copper ions that act as the active sites in the catalytic reactions is different, depending on the Si:Al ratio of the sample; the Cu2+ species supported on the SiO2·Al2O3 sample having a lower Si:Al ratio resist reduction, because the exchanged divalent ions may occupy two exchangeable sites simultaneously. It seems that the higher Si:Al ratio is a necessary condition for keeping an amount of copper ion deposited on the support sufficient for redox reaction as well as for acting as a good NO-decomposition catalyst. From the spectroscopic observations such as IR, emission, X-ray absorption, and electron paramagnetic resonance spectra, it is also found that the copper ions on the SiO2 sample reduced in the evacuation process are dispersed appropriately in Cu2O-like sites.


Journal of Colloid and Interface Science | 2009

On the possibility of AgZSM-5 zeolite being a partial oxidation catalyst for methane.

Yasushige Kuroda; Toshinori Mori; Hiroyuki Sugiyama; Yoshinori Uozumi; Katsuhiro Ikeda; Atsushi Itadani; Mahiko Nagao

A silver-ion-exchanged HZSM-5 zeolite sample (Ag(H)ZSM-5) evacuated at 573 K exhibited prominent catalytic behavior in the partial oxidation of CH(4) at temperatures above 573 K, exceeding the performance of Ag/SiO(2)Al(2)O(3) and Ag/SiO(2) catalysts. From the infrared (IR) and X-ray absorption fine structure (XAFS) spectra, as well as the dioxygen adsorption measurement, it was concluded that the simultaneous existence of Ag(+) ions and small clusters of Ag particles leads to the partial oxidation of methane. Taking the magnitude of the formation enthalpy (per oxygen atom) of Ag(2)O (DeltaH=26 kJ/mol) into consideration, we propose the interpretation that the dioxygen activated on small Ag metal clusters formed in ZSM-5 elaborates a surface oxide layer on small Ag clusters and the thus-formed species is simultaneously and easily decomposed at 573 K or above, and the oxygen activated in this way on the Ag metal spills over and can react with methane that has been activated by the Ag(+) ions exchanged in ZSM-5, resulting in the high catalytic activity of the Ag(H)ZSM-5 sample in the partial oxidation of methane. This interpretation is also well evidenced by XAFS and IR data. It is anticipated that this material has the potential to be a promising catalyst in the conversion of natural gas into higher value-added chemicals and fuels.


Physical Chemistry Chemical Physics | 2008

Identification of two types of exchangeable sites for monovalent copper ions exchanged in MFI-type zeolite

Toshinori Mori; Atsushi Itadani; Eiji Tabuchi; Yoji Sogo; Ryotaro Kumashiro; Mahiko Nagao; Yasushige Kuroda

Three different approaches have been used to characterize the state of exchanged copper ions in copper-ion-exchanged MFI (CuMFI) samples. (1) Two types of an ion-exchangeable site with different adsorption properties for N(2) or CO molecules were identified depending on the pre-treatment temperature (723 or 873 K) of a sample prepared by using an aqueous solution of CuCl(2). (2) The state of the active sites formed by the evacuation of a sample at 873 K that had been prepared using a mixture solution of aqueous NH(4)CH(3)COO and Cu(CH(3)COO)(2) was analysed utilizing both (13)C(18)O and (12)C(16)O to identify the two types of active adsorption sites for CO molecules. (3) CuMFI samples prepared by the ion-exchange method employing anhydrous CuCH(3)COO showed a surprising adsorption feature characterized by a single IR band occurring at 2159 cm(-1) due to the adsorbed CO molecules, but there was no corresponding IR band due to adsorbed N(2) molecules. A successful preparation of CuMFI, in which the monovalent copper ions exclusively occupied another one of the two types of ion-exchangeable sites, was also carried out utilizing the solid-ion exchange method using Cu(CH(3)COO)(2).H(2)O. This site exhibits an IR band occurring at 2151 cm(-1) for CO molecules and also acts as an active site for N(2) molecules. These experimental data correlate, and clearly indicate that there are at least two types of exchangeable sites for copper ions in MFI-type zeolites.


Inorganic Chemistry | 2011

Visible-Light-Derived Photocatalyst Based on TiO2−δNδ with a Tubular Structure

Yoshikazu Hirose; Toshinori Mori; Yuka Morishita; Atsushi Itadani; Takayuki Kudoh; Takahiro Ohkubo; Shigeharu Kittaka; Yasushige Kuroda

We succeeded in achieving visible-light responsiveness on a tubular TiO(2) sample through the treatment of a tubular TiO(2) that has a large surface area with an aqueous solution of ammonia or triethylamine at room temperature and subsequent calcination at 623 K, which produced a nitrided tubular TiO(2) sample. It was found that the ease of nitridation is dependent on the surface states; washing the tubular TiO(2) sample with an aqueous acidic solution is very effective and indispensable. This treatment causes the appearance of acidic sites on the tubular TiO(2), which was proved by the following experiments: NH(3) temperature-programmed desorption and two types of organic reactions exploiting the acid properties. The prepared samples, TiO(2-δ)N(δ), efficiently absorb light in the visible region, and they exhibit a prominent feature for the decomposition of methylene blue in an aqueous solution at 300 K under irradiation with visible light, indicating the achievement of visible-light responsiveness on the tubular TiO(2) sample. This type of tubular TiO(2-δ)N(δ) sample has merit in the sense that it has a large surface area and a characteristic high transparency for enabling photocatalytic reactions because it has a tubular structure and is composed of thin walls.


Physical Chemistry Chemical Physics | 2009

Development of a new analysis method evaluating adsorption energies for the respective ion-exchanged sites on alkali-metal ion-exchanged ZSM-5 utilizing CO as a probe molecule: IR-spectroscopic and calorimetric studies combined with a DFT method

Ryotaro Kumashiro; Kazuhiko Fujie; Aki Kondo; Toshinori Mori; Mahiko Nagao; Hisayoshi Kobayashi; Yasushige Kuroda

For alkali-metal ion-exchanged ZSM-5 zeolites (MZSM-5; M: Li, Na, K, Rb, Cs) the analysis of ion-exchangeable sites was performed by means of a combined method based on IR spectroscopic and calorimetric measurements using CO as the probe molecule. The heat of adsorption of CO was found to be correlated with an IR frequency of stretching vibration of C-O in the adsorbed species. It was revealed that there exists at least two types of sites capable of ion-exchanging; for the lithium ion-exchanged ZSM-5 (LiZSM-5) CO adsorption on each type of site is evaluated to give a set of IR bands and heats of adsorption, 2195 cm(-1) and 49 kJ mol(-1), 2185 cm(-1) and 39 kJ mol(-1) with the aid of the newly developed method utilizing the data obtained from a combined microcalorimetric and IR-spectroscopic study. Such types of data were also obtained for Na- and K-ion-exchanged ZSM-5 samples. Furthermore, a linear relationship between the differential heat of adsorption (q(diff)) evaluated and the shift of wavenumber of the C-O stretching vibration from that of a gaseous CO molecule (Deltanu) was established for the systems of MZSM-5-CO, and the bonding nature of the CO molecule with each site can be explained in terms of the electrostatic force. The model of each adsorption site was also examined by the quantum calculation method (density functional theory: DFT). The trends obtained from the experimental data may be substantially supported by the calculation method even adopting a model as simple as the ZSM-5-type zeolite: the composition of MAlSi(4)O(4)H(12).


Chemical Communications | 2001

Improvement in the surface acidity of Al2O3·SiO2 due to a high Al dispersion

Yasushige Kuroda; Toshinori Mori; Yuzo Yoshikawa

Using ethylene glycol derivatives of aluminium isopropoxide and ethyl orthosilicate precursors in the sol–gel process, discrete aluminosilicate nanoparticles were produced that had a strong Bronsted acidity, high surface area and high thermal stability; these properties were ascribed to a high dispersion of the aluminium atoms in the silica matrix.


Adsorption Science & Technology | 2005

Calorimetric and Spectroscopic Studies of Water Adsorption onto Alkaline Earth Fluorides

Toshinori Mori; Yasushige Kuroda; Ryotaro Kumashiro; Koji Hirata; Hidehiro Toyota; Mahiko Nagao

Interactions between the surfaces of alkaline earth fluorides (CaF2, SrF2 and BaF2) and water molecules were investigated by calorimetric and spectroscopic methods. The exposed surfaces of the alkaline earth fluoride samples, with which the (100) crystalline plane is mainly associated, were found to be fully covered with strongly adsorbed water molecules, resulting in characteristic IR bands at 3684, 2561, 1947 and 1000 cm−1, respectively. This surface was homogeneous towards further water adsorption. The strongly adsorbed water molecules were almost completely desorbed from the surface on evacuating the sample up to 473 K. The heat of immersion in water also increased with increasing pretreatment temperature; this may be attributed to surface rehydration of the alkaline earth fluorides. The state of the surface changed drastically as the pretreatment temperature was increased and stabilized towards incoming water molecules. Thus, the surface formed after evacuation at temperatures greater than 473 K was resistant to hydration even after immersion in water at room temperature. This surface was relatively heterogeneous towards water adsorption, although it behaved homogeneously towards argon adsorption. These facts indicate that strongly adsorbed water molecules appear to be somewhat specific towards the adsorption of further incoming water molecules. The adsorption properties of the (100) plane of alkaline earth fluorides towards water and argon molecules depend strongly on both the electrostatic field strength and the extent of rehydration of the alkaline earth fluoride surface.


Journal of Physical Chemistry B | 1999

Neutron scattering study on dynamics of water molecules in MCM-41

Shuichi Takahara; Masatsugu Nakano; Shigeharu Kittaka; Yasushige Kuroda; Toshinori Mori; Hideaki Hamano; Toshio Yamaguchi


Langmuir | 2005

Preparation of visible-light-responsive TiO2-xNx photocatalyst by a sol-gel method: analysis of the active center on TiO2 that reacts with NH3.

Yasushige Kuroda; Toshinori Mori; Kazunori Yagi; Naoko Makihata; Yoichiro Kawahara; Mahiko Nagao; Shigeharu Kittaka


Langmuir | 2002

Preparation of a water-resistant siliceous MCM-41 sample, through improvement of crystallinity, and its prominent adsorption features

Toshinori Mori; Yasushige Kuroda; Yuzo Yoshikawa; Mahiko Nagao; Shigeharu Kittaka

Collaboration


Dive into the Toshinori Mori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigeharu Kittaka

Okayama University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hisayoshi Kobayashi

Kurashiki University of Science and the Arts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuichi Takahara

Okayama University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge