Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshio Munesue is active.

Publication


Featured researches published by Toshio Munesue.


Nature | 2007

CD38 is critical for social behaviour by regulating oxytocin secretion

Duo Jin; Hong-Xiang Liu; Hirokazu Hirai; Takashi Torashima; Taku Nagai; Olga Lopatina; Natalia A. Shnayder; Kiyofumi Yamada; Mami Noda; Toshihiro Seike; Kyota Fujita; Shin Takasawa; Shigeru Yokoyama; Keita Koizumi; Yoshitake Shiraishi; Shigenori Tanaka; Minako Hashii; Toru Yoshihara; Kazuhiro Higashida; Mohammad Saharul Islam; Nobuaki Yamada; Kenshi Hayashi; Naoya Noguchi; Ichiro Kato; Hiroshi Okamoto; Akihiro Matsushima; Alla B. Salmina; Toshio Munesue; Nobuaki Shimizu; Sumiko Mochida

CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.


Neuroscience Research | 2010

Two genetic variants of CD38 in subjects with autism spectrum disorder and controls.

Toshio Munesue; Shigeru Yokoyama; Kazuhiko Nakamura; Ayyappan Anitha; Kazuo Yamada; Kenshi Hayashi; Tomoya Asaka; Hong-Xiang Liu; Duo Jin; Keita Koizumi; Mohammad Saharul Islam; Jian Jun Huang; Wen Jie Ma; Uh Hyun Kim; Sun Jun Kim; Keunwan Park; Dongsup Kim; Mitsuru Kikuchi; Yasuki Ono; Hideo Nakatani; Shiro Suda; Taishi Miyachi; Hirokazu Hirai; Alla B. Salmina; Yu A. Pichugina; Andrei A. Soumarokov; Nori Takei; Norio Mori; Masatsugu Tsujii; Toshiro Sugiyama

The neurobiological basis of autism spectrum disorder (ASD) remains poorly understood. Given the role of CD38 in social recognition through oxytocin (OT) release, we hypothesized that CD38 may play a role in the etiology of ASD. Here, we first examined the immunohistochemical expression of CD38 in the hypothalamus of post-mortem brains of non-ASD subjects and found that CD38 was colocalized with OT in secretory neurons. In studies of the association between CD38 and autism, we analyzed 10 single nucleotide polymorphisms (SNPs) and mutations of CD38 by re-sequencing DNAs mainly from a case-control study in Japan, and Caucasian cases mainly recruited to the Autism Genetic Resource Exchange (AGRE). The SNPs of CD38, rs6449197 (p<0.040) and rs3796863 (p<0.005) showed significant associations with a subset of ASD (IQ>70; designated as high-functioning autism (HFA)) in the U.S. 104 AGRE family trios, but not with Japanese 188 HFA subjects. A mutation that caused tryptophan to replace arginine at amino acid residue 140 (R140W; (rs1800561, 4693C>T)) was found in 0.6-4.6% of the Japanese population and was associated with ASD in the smaller case-control study. The SNP was clustered in pedigrees in which the fathers and brothers of T-allele-carrier probands had ASD or ASD traits. In this cohort OT plasma levels were lower in subjects with the T allele than in those without. One proband with the T allele who was taking nasal OT spray showed relief of symptoms. The two variant CD38 poloymorphysms tested may be of interest with regard of the pathophysiology of ASD.


NeuroImage | 2010

Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders

Hirotaka Kosaka; Masao Omori; Toshio Munesue; Makoto Ishitobi; Yukiko Matsumura; Tetsuya Takahashi; Kousuke Narita; Tetsuhito Murata; Daisuke N. Saito; Hitoshi Uchiyama; Tomoyo Morita; Mitsuru Kikuchi; Kimiko Mizukami; Hidehiko Okazawa; Norihiro Sadato; Yuji Wada

Enlarged head circumference and increased brain weight have been reported in infants with pervasive developmental disorders (PDD), and volumetric studies suggest that children with PDD have abnormally enlarged brain volumes. However, little is known about brain volume abnormalities in young adults with PDD. We explored gray matter (GM) volume in young adults with PDD. T1-weighted volumetric images were acquired with a 3-T magnetic resonance scanner from 32 males with high-functioning PDD (23.8+/-4.2 years; Full Scale Intelligence Quotient [FSIQ]=101.6+/-15.6) and 40 age-matched normal male control subjects (22.5+/-4.3 years; FSIQ=109.7+/-7.9). Regional GM volumes were compared between the two groups using voxel-based morphometry (VBM) with the Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL). Compared with the control group, the high-functioning PDD group showed significantly less GM in the right insula, the right inferior frontal gyrus, and the right inferior parietal lobule. A conservative threshold confirmed considerably smaller volumes in the right insula and inferior frontal gyrus. In these areas, negative correlations were found between Autism Spectrum Quotient scores and GM volume, although no significant correlations were found between each subjects FSIQ and GM volume. No regions showed greater GM volumes in the high-functioning PDD group. The insular cortex, which works as a relay area for multiple neurocognitive systems, may be one of the key regions underlying the complex clinical features of PDD. These smaller GM volumes in high-functioning PDD subjects may reflect the clinical features of PDD itself, rather than FSIQ.


Journal of Affective Disorders | 2008

High prevalence of bipolar disorder comorbidity in adolescents and young adults with high-functioning autism spectrum disorder: A preliminary study of 44 outpatients

Toshio Munesue; Yasuki Ono; K. Mutoh; K. Shimoda; Hideo Nakatani; Mitsuru Kikuchi

BACKGROUND Psychiatric comorbidity of autism spectrum disorder (ASD) has not been well examined. METHODS Mood disorders in 44 consecutive outpatients with high-functioning ASD were examined at a university hospital according to DSM-IV. Inclusion criteria were an IQ of 70 or higher on the Wechsler Intelligence Scale and age of 12 years or over. RESULTS Sixteen patients (36.4%) were diagnosed with mood disorder. Of these 16 patients, four were diagnosed as having major depressive disorder, two patients as bipolar I disorder, six patients as bipolar II disorder, and four patients as bipolar disorder not otherwise specified. Bipolar disorder accounted for 75% of cases. Twelve patients had Asperger disorder and four patients had pervasive developmental disorder not otherwise specified. None of the patients had autistic disorder. LIMITATIONS The sample size was small. We could not use Autism Diagnostic Interview - Revised. Referral bias could not be avoided in this study. CONCLUSIONS The major comorbid mood disorder in patients with high-functioning ASD is bipolar disorder and not major depressive disorder. The autistic spectrum may share common vulnerability genes with the bipolar spectrum.


Hormones and Behavior | 2012

CD38 and its role in oxytocin secretion and social behavior.

Haruhiro Higashida; Shigeru Yokoyama; Mitsuru Kikuchi; Toshio Munesue

Here, we review the functional roles of cyclic ADP-ribose and CD38, a transmembrane protein with ADP-ribosyl cyclase activity, in mouse social behavior via the regulation of oxytocin (OXT) release, an essential component of social cognition. Herein we describe data detailing the molecular mechanism of CD38-dependent OXT secretion in CD38 knockout mice. We also review studies that used OXT, OXT receptor (OXTR), or CD38 knockout mice. Additionally, we compare the behavioral impairments that occur in these knockout mice in relation to the OXT system and CD38. This review also examines autism spectrum disorder (ASD), which is characterized by social and communication impairments, in relation to defects in the OXT system. Two single nucleotide polymorphisms (SNPs) in the human CD38 gene are possible risk factors for ASD via inhibition of OXT function. Further analysis of CD38 in relation to the OXT system may provide a better understanding of the neuroendocrinological roles of OXT and CD38 in the hypothalamus and of the pathophysiology of ASD. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.


Journal of Neuroendocrinology | 2010

Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice.

Haruhiro Higashida; Olga Lopatina; Toru Yoshihara; Yu A. Pichugina; Andrei A. Soumarokov; Toshio Munesue; Yoshio Minabe; Mitsuru Kikuchi; Yasuki Ono; N. Korshunova; Alla B. Salmina

Oxytocin in the hypothalamus is the biological basis of social recognition, trust, love and bonding. Previously, we showed that CD38, a proliferation marker in leukaemia cells, plays an important role in the hypothalamus in the process of oxytocin release in adult mice. Disruption of Cd38 (Cd38 −/−) elicited impairment of maternal behaviour and male social recognition in adult mice, similar to the behaviour observed in Oxt and oxytocin receptor (Oxtr) gene knockout (Oxt −/− and Oxtr −/−, respectively) mice. Locomotor activity induced by separation from the dam was higher and the number of ultrasonic vocalisation calls was lower in Cd38 −/− than Cd38 +/+ pups. However, these behavioural changes were much milder than those observed in Oxt −/− and Oxtr −/− mice, indicating less impairment of social behaviour in Cd38 −/− pups. These phenotypes appeared to be caused by the high plasma oxytocin levels during development from the neonatal period to 3‐week‐old juvenile mice. ADP‐ribosyl cyclase activity was markedly lower in the knockout mice from birth, suggesting that weaning for mice is a critical time window of plasma oxytocin differentiation. Breastfeeding was an important exogenous source of plasma oxytocin regulation before weaning as a result of the presence of oxytocin in milk and the dam’s mammary glands. The dissimilarity between Cd38 −/− infant behaviour and those of Oxt −/− or Oxtr −/− mice can be explained partly by this exogenous source of oxytocin. These results suggest that secretion of oxytocin into the brain in a CD38‐dependent manner may play an important role in the development of social behaviour.


The Journal of Neuroscience | 2011

Lateralized Theta Wave Connectivity and Language Performance in 2- to 5-Year-Old Children

Mitsuru Kikuchi; Kiyomi Shitamichi; Yuko Yoshimura; Sanae Ueno; Gerard B. Remijn; Tetsu Hirosawa; Toshio Munesue; Tsunehisa Tsubokawa; Yasuhiro Haruta; Manabu Oi; Haruhiro Higashida; Yoshio Minabe

Recent neuroimaging studies support the view that a left-lateralized brain network is crucial for language development in children. However, no previous studies have demonstrated a clear link between lateralized brain functional network and language performance in preschool children. Magnetoencephalography (MEG) is a noninvasive brain imaging technique and is a practical neuroimaging method for use in young children. MEG produces a reference-free signal, and is therefore an ideal tool to compute coherence between two distant cortical rhythms. In the present study, using a custom child-sized MEG system, we investigated brain networks while 78 right-handed preschool human children (32–64 months; 96% were 3-4 years old) listened to stories with moving images. The results indicated that left dominance of parietotemporal coherence in theta band activity (6-8 Hz) was specifically correlated with higher performance of language-related tasks, whereas this laterality was not correlated with nonverbal cognitive performance, chronological age, or head circumference. Power analyses did not reveal any specific frequencies that contributed to higher language performance. Our results suggest that it is not the left dominance in theta oscillation per se, but the left-dominant phase-locked connectivity via theta oscillation that contributes to the development of language ability in young children.


BMC Psychiatry | 2012

Long-term oxytocin administration improves social behaviors in a girl with autistic disorder

Hirotaka Kosaka; Toshio Munesue; Makoto Ishitobi; Mizuki Asano; Masao Omori; Makoto Sato; Akemi Tomoda; Yuji Wada

BackgroundPatients with autism spectrum disorders (ASDs) exhibit core autistic symptoms including social impairments from early childhood and mostly show secondary disabilities such as irritability and aggressive behavior based on core symptoms. However, there are still no radical treatments of social impairments in these patients. Oxytocin has been reported to play important roles in multiple social behaviors dependent on social recognition, and has been expected as one of the effective treatments of social impairments of patients with ASDs.Case presentationWe present a case of a 16-year-old girl with autistic disorder who treated by long-term administration of oxytocin nasal spray. Her autistic symptoms were successfully treated by two month administration; the girl’s social interactions and social communication began to improve without adverse effects. Her irritability and aggressive behavior also improved dramatically with marked decreases in aberrant behavior checklist scores from 69 to 7.ConclusionThis case is the first to illustrate long-term administration of oxytocin nasal spray in the targeted treatment of social impairments in a female with autistic disorder. This case suggests that long-term nasal oxytocin spray is promising and well-tolerated for treatment of social impairments of patients with ASDs.


PLOS ONE | 2011

EEG microstate analysis in drug-naive patients with panic disorder.

Mitsuru Kikuchi; Thomas Koenig; Toshio Munesue; Akira Hanaoka; Werner Strik; Thomas Dierks; Yoshifumi Koshino; Yoshio Minabe

Patients with panic disorder (PD) have a bias to respond to normal stimuli in a fearful way. This may be due to the preactivation of fear-associated networks prior to stimulus perception. Based on EEG, we investigated the difference between patients with PD and normal controls in resting state activity using features of transiently stable brain states (microstates). EEGs from 18 drug-naive patients and 18 healthy controls were analyzed. Microstate analysis showed that one class of microstates (with a right-anterior to left-posterior orientation of the mapped field) displayed longer durations and covered more of the total time in the patients than controls. Another microstate class (with a symmetric, anterior-posterior orientation) was observed less frequently in the patients compared to controls. The observation that selected microstate classes differ between patients with PD and controls suggests that specific brain functions are altered already during resting condition. The altered resting state may be the starting point of the observed dysfunctional processing of phobic stimuli.


Neurochemistry International | 2012

Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38.

Haruhiro Higashida; Shigeru Yokoyama; Jian-Jun Huang; Li Liu; Wen-Jie Ma; Shirin Akther; Chiharu Higashida; Mitsuru Kikuchi; Yoshio Minabe; Toshio Munesue

Previously, we demonstrated that CD38, a transmembrane protein with ADP-ribosyl cyclase activity, plays a critical role in mouse social behavior by regulating the release of oxytocin (OXT), which is essential for mutual recognition. When CD38 was disrupted, social amnesia was observed in Cd38 knockout mice. The autism spectrum disorders (ASDs), characterized by defects in reciprocal social interaction and communication, occur either sporadically or in a familial pattern. However, the etiology of ASDs remains largely unknown. Therefore, the theoretical basis for pharmacological treatments has not been established. Hence, there is a rationale for investigating single nucleotide polymorphisms (SNPs) in the human CD38 gene in ASD subjects. We found several SNPs in this gene. The SNP rs3796863 (C>A) was associated with high-functioning autism (HFA) in American samples from the Autism Gene Resource Exchange. Although this finding was partially confirmed in low-functioning autism subjects in Israel, it has not been replicated in Japanese HFA subjects. The second SNP of interest, rs1800561 (4693C>T), leads to the substitution of an arginine (R) at codon 140 by tryptophan (W; R140W) in CD38. This mutation was found in four probands of ASD and in family members of three pedigrees with variable levels of ASD or ASD traits. The plasma levels of OXT in ASD subjects with the R140W allele were lower than those in ASD subjects lacking this allele. The OXT levels were unchanged in healthy subjects with or without this mutation. One proband with the R140W allele receiving intranasal OXT for approximately 3years showed improvement in areas of social approach, eye contact and communication behaviors, emotion, irritability, and aggression. Five other ASD subjects with mental deficits received nasal OXT for various periods; three subjects showed improved symptoms, while two showed little or no effect. These results suggest that SNPs in CD38 may be possible risk factors for ASD by abrogating OXT function and that some ASD subjects can be treated with OXT in preliminary clinical trials.

Collaboration


Dive into the Toshio Munesue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge