Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshitsugu Fujita is active.

Publication


Featured researches published by Toshitsugu Fujita.


Biochemical and Biophysical Research Communications | 2013

Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR.

Toshitsugu Fujita; Hodaka Fujii

Isolation of specific genomic regions retaining molecular interactions is necessary for their biochemical analysis. Here, we established a novel method, engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP), for purification of specific genomic regions retaining molecular interactions. We showed that enChIP using the CRISPR system efficiently isolates specific genomic regions. In this form of enChIP, specific genomic regions are immunoprecipitated with antibody against a tag(s), which is fused to a catalytically inactive form of Cas9 (dCas9), which is co-expressed with a guide RNA (gRNA) and recognizes endogenous DNA sequence in the genomic regions of interest. enChIP-mass spectrometry (enChIP-MS) targeting endogenous loci identified associated proteins. enChIP using the CRISPR system would be a convenient and useful tool for dissecting chromatin structure of genomic regions of interest.


Scientific Reports | 2013

Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP)

Toshitsugu Fujita; Yoshinori Asano; Junko Ohtsuka; Yoko Takada; Kazunobu Saito; Rieko Ohki; Hodaka Fujii

Biochemical analysis of molecular interactions in specific genomic regions requires their isolation while retaining molecular interactions in vivo. Here, we report isolation of telomeres by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using a transcription activator-like (TAL) protein recognizing telomere repeats. Telomeres recognized by the tagged TAL protein were immunoprecipitated with an antibody against the tag and subjected to identification of telomere-binding molecules. enChIP-mass spectrometry (enChIP-MS) targeting telomeres identified known and novel telomere-binding proteins. The data have been deposited to the ProteomeXchange with identifier PXD000461. In addition, we showed that RNA associated with telomeres could be isolated by enChIP. Identified telomere-binding molecules may play important roles in telomere biology. enChIP using TAL proteins would be a useful tool for biochemical analysis of specific genomic regions of interest.


PLOS ONE | 2011

Direct Identification of Insulator Components by Insertional Chromatin Immunoprecipitation

Toshitsugu Fujita; Hodaka Fujii

Comprehensive understanding of mechanisms of epigenetic regulation requires identification of molecules bound to genomic regions of interest in vivo. However, non-biased methods to identify molecules bound to specific genomic loci in vivo are limited. Here, we applied insertional chromatin immunoprecipitation (iChIP) to direct identification of components of insulator complexes, which function as boundaries of chromatin domain. We found that the chicken β-globin HS4 (cHS4) insulator complex contains an RNA helicase protein, p68/DDX5; an RNA species, steroid receptor RNA activator 1; and a nuclear matrix protein, Matrin-3, in vivo. Binding of p68 and Matrin-3 to the cHS4 insulator core sequence was mediated by CCCTC-binding factor (CTCF). Thus, our results showed that it is feasible to directly identify proteins and RNA bound to a specific genomic region in vivo by using iChIP.


Journal of Biological Chemistry | 2007

The rate of c-fos transcription in vivo is continuously regulated at the level of elongation by dynamic stimulus-coupled recruitment of positive transcription elongation factor b.

Stephan Ryser; Toshitsugu Fujita; Silvia Tortola; Isabelle Piuz; Werner Schlegel

In mammalian cells, multiple stimuli induce the expression of the immediate early gene c-fos. The specificity of c-fos transcriptional response depends on the activation of signaling protein kinases, transcription factors, and chromatin-modifying complexes but also on a regulated block to elongation in the first intron. Here we show by chromatin immunoprecipitation that finely tuned control of c-fos gene expression by distinct stimuli is associated with a dynamic regulation of transcription elongation and differential phosphorylation of the C-terminal domain of RNA polymerase II. Comparison of two stimuli of c-fos expression in the pituitary cell line GH4C1, namely the thyrotropin-releasing hormone versus depolarizing KCl, shows that both stimuli increase initiation, but only thyrotropin-releasing hormone is efficient to stimulate elongation and thus produce high transcription rates. To control elongation, the elongation factor P-TEFb is recruited to the 5′-end of the gene in a stimuli and time-dependent manner. Transition from initiation to elongation depends also on the dynamic recruitment of the initiation factors TFIIB and TFIIE but not TFIID, which remains constitutively bound on the promoter. It thus appears that tight coupling of signaling input to transcriptional output rate is achieved by c-fos gene-specific mechanisms, which control post-initiation steps rather than pre-initiation complex assembly.


Molecular and Cellular Biology | 2008

Up-regulation of P-TEFb by the MEK1-extracellular signal-regulated kinase signaling pathway contributes to stimulated transcription elongation of immediate early genes in neuroendocrine cells.

Toshitsugu Fujita; Stephan Ryser; Isabelle Piuz; Werner Schlegel

ABSTRACT The positive elongation factor P-TEFb appears to function as a crucial C-terminal-domain (CTD) kinase for RNA polymerase II (Pol II) transcribing immediate early genes (IEGs) in neuroendocrine GH4C1 cells. Chromatin immunoprecipitation indicated that in resting cells Pol II occupied the promoter-proximal regions of the c-fos and junB genes, together with the negative elongation factors DSIF and NELF. Thyrotropin-releasing hormone (TRH)-induced recruitment of positive transcription elongation factor b (P-TEFb) abolished the pausing of Pol II and enhanced phosphorylation of CTD serine 2, resulting in transcription elongation. In addition, P-TEFb was essential for splicing and 3′-end processing of IEG transcripts. Importantly, the MEK1-extracellular signal-regulated kinase (ERK) signaling pathway activated by TRH up-regulated nuclear CDK9 and CDK9/cyclinT1 dimers (i.e., P-TEFb), facilitating the recruitment of P-TEFb to c-fos and other IEGs. Thus, in addition to established gene transcription control via promoter response elements, the MEK1-ERK signaling pathway controls transcription elongation by Pol II via the up-regulation of nuclear CDK9 integrated into P-TEFb.


PLOS ONE | 2014

Identification of Proteins Associated with an IFNγ-Responsive Promoter by a Retroviral Expression System for enChIP Using CRISPR

Toshitsugu Fujita; Hodaka Fujii

Isolation of specific genomic regions retaining molecular interactions is essential for comprehensive identification of molecules associated with the genomic regions. Recently, we developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technology for purification of specific genomic regions. Here, we developed a retroviral expression system for enChIP using CRISPR. We showed that the target genomic locus can be purified with high efficiency by using this system. We also showed that contamination of potential off-target sites is negligible by using this system if the guide RNA (gRNA) for the target site has a sufficiently long unique sequence in its seed sequence. enChIP combined with stable isotope labeling using amino acids in cell culture (SILAC) analysis identified proteins whose association with the interferon (IFN) regulatory factor-1 (IRF-1) promoter region increases in response to IFNγ stimulation. The list of the associated proteins contained many novel proteins in the context of IFNγ-induced gene expression as well as proteins related to histone deacetylase complexes whose involvement has been suggested in IFNγ-mediated gene expression. Finally, we confirmed IFNγ-induced increased association of the identified proteins with the IRF-1 promoter by ChIP. Thus, our results showed that the retroviral enChIP system using CRISPR would be useful for biochemical analysis of genome functions including transcription and epigenetic regulation.


Methods of Molecular Biology | 2015

Isolation of Specific Genomic Regions and Identification of Associated Molecules by Engineered DNA-Binding Molecule-Mediated Chromatin Immunoprecipitation (enChIP) Using CRISPR

Toshitsugu Fujita; Hodaka Fujii

Isolation of specific genomic regions retaining molecular interactions is necessary for their biochemical analysis. Here, we describe engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using the CRISPR system, for purification of specific genomic regions retaining molecular interactions. In this form of enChIP, specific genomic regions are immunoprecipitated with antibody against a tag(s), which is fused to a catalytically inactive form of Cas9 (dCas9), which is co-expressed with a guide RNA (gRNA) and recognizes endogenous DNA sequence in the genomic regions of interest. enChIP combined with mass spectrometry (enChIP-MS), next-generation sequencing (enChIP-Seq), and RNA-Seq (enChIP-RNA-Seq) can identify proteins, other genomic regions, and RNA, respectively, that interact with the target genomic region.


BMC Molecular Biology | 2014

Efficient isolation of specific genomic regions retaining molecular interactions by the iChIP system using recombinant exogenous DNA-binding proteins

Toshitsugu Fujita; Hodaka Fujii

BackgroundComprehensive understanding of mechanisms of genome functions requires identification of molecules interacting with genomic regions of interest in vivo. We previously developed the insertional chromatin immunoprecipitation (iChIP) technology to isolate specific genomic regions retaining molecular interactions and identify their associated molecules. iChIP consists of locus-tagging and affinity purification. The recognition sequences of an exogenous DNA-binding protein such as LexA are inserted into a genomic region of interest in the cell to be analyzed. The exogenous DNA-binding protein fused with a tag(s) is expressed in the cell and the target genomic region is purified with antibody against the tag(s). In this study, we developed the iChIP system using recombinant DNA-binding proteins to make iChIP more straightforward than the conventional iChIP system using expression of the exogenous DNA-binding proteins in the cells to be analyzed.ResultsIn this system, recombinant 3xFNLDD-D (r3xFNLDD-D) consisting of the 3xFLAG-tag, a nuclear localization signal (NLS), the DNA-binding domain plus the dimerization domain of the LexA protein, and the Dock-tag is used for isolation of specific genomic regions. r3xFNLDD-D was expressed using a silkworm-baculovirus expression system and purified by affinity purification. iChIP using r3xFNLDD-D could efficiently isolate the single-copy chicken Pax5 (cPax5) locus, in which LexA binding elements were inserted, with negligible contamination of other genomic regions. In addition, we could detect RNA associated with the cPax5 locus using this form of the iChIP system combined with RT-PCR.ConclusionsThe iChIP system using r3xFNLDD-D can isolate specific genomic regions retaining molecular interactions without expression of the exogenous DNA-binding protein in the cell to be analyzed. iChIP using r3xFNLDD-D would be more straightforward and useful for analysis of specific genomic regions to elucidate their functions as compared to the previously published iChIP protocol.


PLOS ONE | 2015

Identification of Non-Coding RNAs Associated with Telomeres Using a Combination of enChIP and RNA Sequencing

Toshitsugu Fujita; Miyuki Yuno; Daisuke Okuzaki; Rieko Ohki; Hodaka Fujii

Accumulating evidence suggests that RNAs interacting with genomic regions play important roles in the regulation of genome functions, including X chromosome inactivation and gene expression. However, to our knowledge, no non-biased methods of identifying RNAs that interact with a specific genomic region have been reported. Here, we used enChIP-RNA-Seq, a combination of engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) and RNA sequencing (RNA-Seq), to perform a non-biased search for RNAs interacting with telomeres. In enChIP-RNA-Seq, the target genomic regions are captured using an engineered DNA-binding molecule such as a transcription activator-like protein. Subsequently, RNAs that interact with the target genomic regions are purified and sequenced. The RNAs detected by enChIP-RNA-Seq contained known telomere-binding RNAs, including the telomerase RNA component (Terc), the RNA component of mitochondrial RNA processing endoribonuclease (Rmrp), and Cajal body-specific RNAs. In addition, a number of novel telomere-binding non-coding RNAs were also identified. Binding of two candidate non-coding RNAs to telomeres was confirmed by immunofluorescence microscopy and RNA fluorescence in situ hybridization (RNA-FISH) analyses. The novel telomere-binding non-coding RNAs identified here may play important roles in telomere functions. To our knowledge, this study is the first non-biased identification of RNAs associated with specific genomic regions. The results presented here suggest that enChIP-RNA-Seq analyses are useful for the identification of RNAs interacting with specific genomic regions, and may help to contribute to current understanding of the regulation of genome functions.


International Scholarly Research Notices | 2013

Locus-specific biochemical epigenetics/chromatin biochemistry by insertional chromatin immunoprecipitation.

Toshitsugu Fujita; Hodaka Fujii

Comprehensive understanding of regulation mechanisms of biological phenomena mediated by functions of genomic DNA requires identification of molecules bound to genomic regions of interest in vivo. However, nonbiased methods to identify molecules bound to specific genomic loci in vivo are limited. To perform biochemical and molecular biological analysis of specific genomic regions, we developed the insertional chromatin immunoprecipitation (iChIP) technology to purify the genomic regions of interest. We applied iChIP to direct identification of components of insulator complexes, which function as boundaries of chromatin domain, showing that it is feasible to directly identify proteins and RNA bound to a specific genomic region in vivo by using iChIP. In addition, recently, we succeeded in identifying proteins and genomic regions interacting with a single copy endogenous locus. In this paper, we will discuss the application of iChIP to epigenetics and chromatin research.

Collaboration


Dive into the Toshitsugu Fujita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge