Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshiya Ueta is active.

Publication


Featured researches published by Toshiya Ueta.


The Astronomical Journal | 2006

Spitzer survey of the large magellanic cloud: Surveying the agents of a Galaxy's evolution (SAGE). I. Overview and initial results

Margaret M. Meixner; Karl D. Gordon; Remy Indebetouw; Joseph L. Hora; Barbara A. Whitney; R. D. Blum; William T. Reach; Jean Philippe Bernard; Marilyn R. Meade; B. L. Babler; C. W. Engelbracht; B.-Q. For; Karl Anthony Misselt; Uma P. Vijh; Claus Leitherer; Martin Cohen; Ed B. Churchwell; F. Boulanger; Jay A. Frogel; Yasuo Fukui; J. S. Gallagher; Varoujan Gorjian; Jason Harris; Douglas M. Kelly; Akiko Kawamura; So Young Kim; William B. Latter; S. Madden; Ciska Markwick-Kemper; Akira Mizuno

We are performing a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; ~7° × 7°) using the IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160 μm) instruments on board the Spitzer Space Telescope in the Surveying the Agents of a Galaxys Evolution (SAGE) survey, these agents being the interstellar medium (ISM) and stars in the LMC. This paper provides an overview of the SAGE Legacy project, including observing strategy, data processing, and initial results. Three key science goals determined the coverage and depth of the survey. The detection of diffuse ISM with column densities >1.2 × 10^(21) H cm^(-2) permits detailed studies of dust processes in the ISM. SAGEs point-source sensitivity enables a complete census of newly formed stars with masses >3 M_☉ that will determine the current star formation rate in the LMC. SAGEs detection of evolved stars with mass-loss rates >1 × 10^(-8) M_☉ yr^(-1) will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by 3 months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are nonproprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point-source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data for a region near N79 and N83. The MIPS 70 and 160 μm images of the diffuse dust emission of the N79/N83 region reveal a similar distribution to the gas emissions, especially the H I 21 cm emission. The measured point-source sensitivity for the epoch 1 data is consistent with expectations for the survey. The point-source counts are highest for the IRAC 3.6 μm band and decrease dramatically toward longer wavelengths, consistent with the fact that stars dominate the point-source catalogs and the dusty objects detected at the longer wavelengths are rare in comparison. The SAGE epoch 1 point-source catalog has ~4 × 10^6 sources, and more are anticipated when the epoch 1 and 2 data are combined. Using Milky Way (MW) templates as a guide, we adopt a simplified point-source classification to identify three candidate groups—stars without dust, dusty evolved stars, and young stellar objects—that offer a starting point for this work. We outline a strategy for identifying foreground MW stars, which may comprise as much as 18% of the source list, and background galaxies, which may comprise ~12% of the source list.


The Astrophysical Journal | 2000

An hst snapshot survey of proto-planetary nebulae candidates: two types of axisymmetric reflection nebulosities

Toshiya Ueta; Margaret M. Meixner; Matthew Bobrowsky

We report the results from an optical imaging survey of proto-planetary nebula candidates using the Hubble Space Telescope (HST). The goals of the survey were to image low surface brightness optical reflection nebulosities around proto-planetary nebulae and to investigate the distribution of the circumstellar dust, which scatters the star light from the central post-asymptotic giant branch star and creates the optical reflection nebulosities. We exploited the high resolving power and wide dynamic range of HST and detected nebulosities in 21 of 27 sources. The reduced and deconvolved images are presented along with photometric and geometric measurements. All detected reflection nebulosities show elongation, and the nebula morphology bifurcates depending on the degree of the central star obscuration. The star-obvious low-level-elongated (SOLE) nebulae show a bright central star embedded in a faint, extended nebulosity, whereas the dust-prominent longitudinally extended (DUPLEX) nebulae have remarkable bipolar structure with a completely or partially obscured central star. The intrinsic axisymmetry of these proto-planetary nebula reflection nebulosities demonstrates that the axisymmetry frequently found in planetary nebulae predates the proto-planetary nebula phase, confirming previous independent results. We suggest that axisymmetry in proto-planetary nebulae is created by an equatorially enhanced superwind at the end of the asymptotic giant branch phase. We discuss that the apparent morphological dichotomy is caused by a difference in the optical thickness of the circumstellar dust/gas shell with a differing equator-to-pole density contrast. Moreover, we show that SOLE and DUPLEX nebulae are physically distinct types of proto-planetary nebulae, with a suggestion that higher mass progenitor AGB stars are more likely to become DUPLEX proto-planetary nebulae.


The Astronomical Journal | 2008

Spitzer survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (SAGE) IV: dust properties in the interstellar medium

Jean Philippe Bernard; William T. Reach; D. Paradis; Margaret M. Meixner; R. Paladini; Akiko Kawamura; Toshikazu Onishi; Uma P. Vijh; Karl D. Gordon; Remy Indebetouw; Joseph L. Hora; Barbara A. Whitney; R. D. Blum; Marilyn R. Meade; B. L. Babler; Ed Churchwell; C. W. Engelbracht; B.-Q. For; Karl Anthony Misselt; Claus Leitherer; Martin Cohen; F. Boulanger; Jay A. Frogel; Yasuo Fukui; J. S. Gallagher; Varoujan Gorjian; Jason Harris; Douglas M. Kelly; William B. Latter; S. Madden

The goal of this paper is to present the results of a preliminary analysis of the extended infrared (IR) emission by dust in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). We combine Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and Infrared Astronomical Satellite (IRAS) data and correlate the infrared emission with gas tracers of H I, CO, and Hα. We present a global analysis of the infrared emission as well as detailed modeling of the spectral energy distribution (SED) of a few selected regions. Extended emission by dust associated with the neutral, molecular, and diffuse ionized phases of the ISM is detected at all IR bands from 3.6 μm to 160 μm. The relative abundance of the various dust species appears quite similar to that in the Milky Way (MW) in all the regions we have modeled. We construct maps of the temperature of large dust grains. The temperature map shows variations in the range 12.1-34.7 K, with a systematic gradient from the inner to outer regions, tracing the general distribution of massive stars and individual H II regions as well as showing warmer dust in the stellar bar. This map is used to derive the far-infrared (FIR) optical depth of large dust grains. We find two main departures in the LMC with respect to expectations based on the MW: (1) excess mid-infrared (MIR) emission near 70 μm, referred to as the 70 μm excess, and (2) departures from linear correlation between the FIR optical depth and the gas column density, which we refer to as FIR excess emission. The 70 μm excess increases gradually from the MW to the LMC to the Small Magellanic Cloud (SMC), suggesting evolution with decreasing metallicity. The excess is associated with the neutral and diffuse ionized gas, with the strongest excess region located in a loop structure next to 30 Dor. We show that the 70 μm excess can be explained by a modification of the size distribution of very small grains with respect to that in the MW, and a corresponding mass increase of ≃13% of the total dust mass in selected regions. The most likely explanation is that the 70 μm excess is due to the production of large very small grains (VSG) through erosion of larger grains in the diffuse medium. This FIR excess could be due to intrinsic variations of the dust/gas ratio, which would then vary from 4.6 to 2.3 times lower than the MW values across the LMC, but X_(CO) values derived from the IR emission would then be about three times lower than those derived from the Virial analysis of the CO data. We also investigate the possibility that the FIR excess is associated with an additional gas component undetected in the available gas tracers. Assuming a constant dust abundance in all ISM phases, the additional gas component would have twice the known H I mass. We show that it is plausible that the FIR excess is due to cold atomic gas that is optically thick in the 21 cm line, while the contribution by a pure H_2 phase with no CO emission remains a possible explanation.


Astronomy and Astrophysics | 2011

MESS (Mass-loss of Evolved StarS), a Herschel key program

Martin A. T. Groenewegen; C. Waelkens; M. J. Barlow; F. Kerschbaum; Pedro Garcia-Lario; J. Cernicharo; Joris Blommaert; Jeroen Bouwman; Martin Cohen; N. L. J. Cox; L. Decin; Katrina Exter; Walter Kieran Gear; Haley Louise Gomez; Peter Charles Hargrave; Th. Henning; Damien Hutsemekers; R. J. Ivison; Alain Jorissen; O. Krause; D. Ladjal; S. J. Leeks; T. Lim; Mikako Matsuura; Yaël Nazé; G. Olofsson; Roland Ottensamer; E. T. Polehampton; Th. Posch; Grégor Rauw

MESS (Mass-loss of Evolved StarS) is a guaranteed time key program that uses the PACS and SPIRE instruments on board the Herschel space observatory to observe a representative sample of evolved stars, that include asymptotic giant branch (AGB) and post-AGB stars, planetary nebulae and red supergiants, as well as luminous blue variables, Wolf-Rayet stars and supernova remnants. In total, of order 150 objects are observed in imaging and about 50 objects inspectroscopy. This paper describes the target selection and target list, and the observing strategy. Key science projects are described, and illustrated using results obtained during Herschel’s science demonstration phase. Aperture photometry is given for the 70 AGB and post-AGB stars observed up to October 17, 2010, which constitutes the largest single uniform database of far-IR and sub-mm fluxes for late-type stars.


The Astrophysical Journal | 2003

2-DUST: A Dust Radiative Transfer Code for an Axisymmetric System

Toshiya Ueta; Margaret M. Meixner

We have developed a general purpose dust radiative transfer code for an axisymmetric system, 2-DUST, motivated by the recent increasing availability of high-resolution images of circumstellar dust shells at various wavelengths. This code solves the equation of radiative transfer following the principle of long characteristic in a two-dimensional polar grid while considering a three-dimensional radiation field at each grid point. A solution is sought through an iterative scheme in which self-consistency of the solution is achieved by requiring a global luminosity constancy throughout the shell. The dust opacities are calculated through Mie theory from the given size distribution and optical properties of the dust grains. The main focus of the code is to obtain insights on (1) the global energetics of dust grains in the shell and (2) the two-dimensional projected morphologies that are strongly dependent on the mixed effects of the axisymmetric dust distribution and inclination angle of the shell. Here test models are presented with discussion of the results. The code can be supplied with a user-defined density distribution function and, thus, is applicable to a variety of dusty astronomical objects possessing the axisymmetric geometry.


The Astrophysical Journal | 2008

Hubble Space Telescope Snapshot Survey of Post-AGB Objects

Natasza Siodmiak; Margaret M. Meixner; Toshiya Ueta; Ben E. K. Sugerman; G. C. Van de Steene; R. Szczerba

The results from a Hubble Space T elescope (HST ) snapshot survey of post-AGB objects are shown. The aim of the survey is to complement existing HST images of PPN and to connect various types of nebulosities with physical and chemical properties of their central stars. Nebulosities are detected in 15 of 33 sources. Images and photometric and geometric measurements are presented. For sources with nebulosities we see a morphological bifurcation into two groups, DUPLEX and SOLE, as previous studies have found. We find further support to the previous results suggesting that this dichotomy is caused by a difference in optical thickness of the dust shell. The remaining 18 sources are classified as stellar post-AGB objects, because our observations indicate a lack of nebulosity. We show that some stellar sources may in fact be DUPLEX or SOLE based on their infrared colors. The cause of the differences among the groups are investigated. We discuss some evidence suggesting that high progenitor-mass AGB stars tend to become DUPLEX post-AGB objects. Intermediate progenitormass AGB stars tend to be SOLE post-AGB objects. Most of the stellar sources probably have low mass progenitors and do not seem to develop nebulosities during the post-AGB phase and therefore do not become planetary nebulae. Subject headings: planetary nebulae: general — stars: AGB and post-AGB — stars: circumstellar matter — stars: mass loss — reflection nebulaeThe results of a Hubble Space Telescope (HST) snapshot survey of post-AGB objects are shown. The aim of the survey is to complement existing HST images of protoplanetary nebulae and to connect various types of nebulosities with the physical and chemical properties of their central stars. Nebulosities are detected in 15 of 33 sources. Images and photometric and geometric measurements are presented. For sources with nebulosities we see a morphological bifurcation into two groups, DUPLEX and SOLE, as previous studies have found. We find further support for the previous results, suggesting that this dichotomy is caused by a difference in the optical thickness of the dust shell. The remaining 18 sources are classified as stellar post-AGB objects, because our observations indicate a lack of nebulosity. We show that some stellar sources may in fact be DUPLEX or SOLE objects based on their infrared colors. The causes of the differences among the groups are investigated. We discuss some evidence suggesting that high progenitor mass AGB stars tend to become DUPLEX post-AGB objects and intermediate progenitor mass AGB stars tend to become SOLE post-AGB objects. Most of the stellar sources probably have low-mass progenitors and do not seem to develop nebulosities during the post-AGB phase; therefore, they do not become planetary nebulae.


Astronomy and Astrophysics | 2011

The optically bright post-AGB population of the LMC

E. van Aarle; H. Van Winckel; T. Lloyd Evans; Toshiya Ueta; Peter R. Wood; Adam Ginsburg

Context. The detected variety in chemistry and circumstellar shell morphology of the limited sample of Galactic post-Asymptotic Giant Branch (AGB) stars is so large that there is no consensus yet on how the different objects are linked by evolutionary channels. The evaluation is complicated by the fact that their distanc es and hence luminosities remain largely unknown. Aims. We construct a catalogue of the optically bright post-AGB stars in the Large Magellanic Cloud (LMC). The sample forms an ideal testbed for stellar evolution theory predictions of t he final phase of low- and intermediate-mass stars, because t he distance and hence luminosity and also the current and initial mass of these objects is well constrained. Methods. Via cross-correlation of the Spitzer SAGE catalogue with optical catalogues we selected a sample of LMC post-AGB candidates based on their [8]− [24] colour index and estimated luminosity. We determined the fundamental properties of the central stars of 105 of these objects using low-resolution, optical spectra that we obtained at Siding Spring Observatory and SAAO. Results. We constructed a catalogue of 70 high probability and 1337 candidate post-AGB stars that is available at the CDS ⋆ . About half of the objects in our sample of post-AGB candidates show a spectral energy distribution (SED) that is indicative of a disc rather than an expanding and cooling AGB remnant. Like in the Galaxy, the disc sources are likely associated with binary evolution. Important side products of this research are catalogues of candidate young stellar objects, candidate supergiants wit h circumstellar dust, and discarded objects for which a spectrum was obtained. These too are available at the CDS.


The Astronomical Journal | 2002

Large-Scale Extended Emission around the Helix Nebula: Dust, Molecules, Atoms, and Ions

Angela Karen Speck; Margaret M. Meixner; David Y. Fong; Peter R. McCullough; Danielle E. Moser; Toshiya Ueta

We present new observations of the ionized gas, molecular gas, and cool dust in the Helix Nebula (NGC 7293). The ionized gas is observed in the form of an Himage, which is constructed using images from the Southern HSky Survey Atlas. The molecular emission was mapped using the H2 v =1 ! 0 S(1) line at 2.122 lm. The far-infrared (FIR) observations were obtained using ISOPHOT on the Infrared Space Observ- atory. The Hobservations are more sensitive than previous measurements and show the huge extent of the Helix, confirming it as a density-bounded nebula and showing previously unseen point-symmetric structures. The H2 observations show that the molecular gas follows the distribution of molecular material shown in pre- vious work. The molecular emission is confined to that part of the nebula seen in the classic optical image. Furthermore, comparison of the H2 emission strength with time-dependent models for photodissociation regions (PDRs) shows that the emission arises from thermal excitation of the hydrogen molecules in PDRs and not from shocks. The FIR observations, at 90 and 160 lm, represent mostly contributions from thermal dust emission from cool dust grains but include a small contribution from ionized atomic lines. Comparison of the FIR emission with the Hobservation shows that the dust and ionized gas are coincident and extend to � 1100 00 radius. This equates to a spatial radial extent of more than 1 pc (assuming a distance to the Helix of � 200 pc). Assuming that the outer layers of the circumstellar shell have spherical symmetry, radiative transfer modeling of the emission in Hgives a shell mass of � 1.5 M� . However, the modeling does not cover the outermost part of the shell (beyond � 600 00 radius), and therefore this is a lower limit for the shell mass. Moreover, the models suggest the need for very large dust grains, with � 80% of the dust mass in grains larger than 3.5 lm. Comparison of these new observations with previous observations shows the large-scale stratifi- cation of the Helix in terms of ionized gas and dust, as well as the coexistence of molecular species inside the ionized zones, where molecules survive in dense condensations and cometary knots.


The Astrophysical Journal | 2001

Subarcsecond Mid-Infrared Structure of the Dust Shell around IRAS 22272+5435*

Toshiya Ueta; Margaret M. Meixner; Philip M. Hinz; William F. Hoffmann; Wolfgang Brandner; Aditya Dayal; Lynne K. Deutsch; Giovanni G. Fazio; Joseph L. Hora

We report sub-arcsecond imaging of extended mid-infrared emission from a proto-planetary nebula (PPN), \iras 22272+5435, performed at the MMT observatory with its newly upgraded 6.5 m aperture telescope and at the Keck observatory. The mid-infrared emission structure is resolved into two emission peaks separated by


The Astrophysical Journal | 2002

Two Subclasses of Proto-Planetary Nebulae: Model Calculations

Margaret M. Meixner; Toshiya Ueta; Matthew Bobrowsky; Angela Karen Speck

0\arcsec.5 - 0\arcsec.6

Collaboration


Dive into the Toshiya Ueta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideyuki Izumiura

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

M. J. Barlow

University College London

View shared research outputs
Top Co-Authors

Avatar

Katrina Exter

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

C. Waelkens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Lim

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge