Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshiyuki Someya is active.

Publication


Featured researches published by Toshiyuki Someya.


Molecular Psychiatry | 2000

Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients.

M Takahashi; Osamu Shirakawa; K Toyooka; Noboru Kitamura; Takeshi Hashimoto; Kiyoshi Maeda; S Koizumi; Koichi Wakabayashi; Hitoshi Takahashi; Toshiyuki Someya; Hiroyuki Nawa

Previous neuropathological studies have revealed that the corticolimbic system of schizophrenic patients expresses abnormal levels of various synaptic molecules, which are known to be influenced by the neuronal differentiation factors, neurotrophins. Therefore, we determined levels of neurotrophins and their receptors in the postmortem brains of schizophrenic patients and control subjects in relation to molecular impairments in schizophrenia. Among the neurotrophins examined, levels of brain-derived neurotrophic factor (BDNF) were elevated specifically in the anterior cingulate cortex and hippocampus of schizophrenic patients, but levels of nerve growth factors and neurotrophin-3 showed no change in any of the regions examined. In parallel, the expressions of TrkB receptor and calbindin-D, which are both influenced by BDNF, were reduced significantly in the hippocampus or the prefrontal cortex. However, neuroleptic treatment did not appear to mimic the neurotrophic change. Neither withdrawal of drug treatment in patients nor chronic administration of haloperidol to rats altered levels of BDNF. These findings suggest that neurotrophic abnormality is associated with the corticolimbic structures of schizophrenic patients and might provide the molecular substrate for pathological manifestations of the illness.


Psychiatry and Clinical Neurosciences | 2010

Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models.

Yuichiro Watanabe; Toshiyuki Someya; Hiroyuki Nawa

The pathogenesis of schizophrenia has yet to be fully characterized. Gene–environment interactions have been found to play a crucial role in the vulnerability to this disease. Among various environmental factors, inflammatory immune processes have been most clearly implicated in the etiology and pathology of schizophrenia. Cytokines, regulators of immune/inflammatory reactions and brain development, emerge as part of a common pathway of genetic and environmental components of schizophrenia. Maternal infection, obstetric complications, neonatal hypoxia and brain injury all recruit cytokines to mediate inflammatory processes. Abnormal expression levels of specific cytokines such as epidermal growth factor, interleukins (IL) and neuregulin‐1 are found both in the brain and peripheral blood of patients with schizophrenia. Accordingly, cytokines have been proposed to transmit peripheral immune/inflammatory signals to immature brain tissue through the developing blood–brain barrier, perturbing structural and phenotypic development of the brain. This cytokine hypothesis of schizophrenia is also supported by modeling experiments in animals. Animals treated with specific cytokines of epidermal growth factor, IL‐1, IL‐6, and neuregulin‐1 as embryos or neonates exhibit schizophrenia‐like behavioral abnormalities after puberty, some of which are ameliorated by treatment with antipsychotics. In this review, we discuss the neurobiological mechanisms underlying schizophrenia and novel antipsychotic candidates based on the cytokine hypothesis.


Molecular Psychiatry | 2002

Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients

T Futamura; Kazuhiko Toyooka; Shuji Iritani; Kazuhiro Niizato; Ryosuke Nakamura; K Tsuchiya; Toshiyuki Someya; Akiyoshi Kakita; Hitoshi Takahashi; Hiroyuki Nawa

Epidermal growth factor (EGF) comprises a structurally related family of proteins containing heparin-binding EGF-like growth factor (HB-EGF) and transforming growth factor alpha (TGFα) that regulates the development of dopaminergic neurons as well as monoamine metabolism. We assessed the contribution of EGF to schizophrenia by measuring EGF family protein levels in postmortem brains and in fresh serum of schizophrenic patients and control subjects. EGF protein levels were decreased in the prefrontal cortex and striatum of schizophrenic patients, whereas the levels of HB-EGF and TGFα were not significantly different in any of the regions examined. Conversely, EGF receptor expression was elevated in the prefrontal cortex. Serum EGF levels were markedly reduced in schizophrenic patients, even in young, drug-free patients. Chronic treatment of animals with the antipsychotic drug haloperidol had no influence on EGF levels in the brain or serum. These findings suggest that there is abnormal EGF production in various central and peripheral tissues of patients with both acute and chronic schizophrenia. EGF might thus provide a molecular substrate for the pathologic manifestation of the illness, although additional studies are required to determine a potential link between impaired EGF signaling and the pathology/etiology of schizophrenia.


Biological Psychiatry | 2010

Brain Cannabinoid CB2 Receptor in Schizophrenia

Hiroki Ishiguro; Yasue Horiuchi; Maya Ishikawa; Minori Koga; Keiko Imai; Miyuki Morikawa; Toshiya Inada; Yuichiro Watanabe; Makoto Takahashi; Toshiyuki Someya; Hiroshi Ujike; Nakao Iwata; Norio Ozaki; Emmanuel S. Onaivi; Hiroshi Kunugi; Tsukasa Sasaki; Masanari Itokawa; Makoto Arai; Kazuhiro Niizato; Shyuji Iritani; Izumi Naka; Jun Ohashi; Akiyoshi Kakita; Hitoshi Takahashi; Hiroyuki Nawa; Tadao Arinami

BACKGROUND Neural endocannabinoid function appears to be involved in schizophrenia. Two endocannabinoid receptors, CB1 and CB2, are found in the brain and elsewhere in the body. We investigated roles of CB2 in schizophrenia. MATERIALS AND METHODS An association study was performed between tag single nucleotide polymorphisms (SNPs) in the CNR2 gene encoding the CB2 receptor and schizophrenia in two independent case-control populations. Allelic differences of associated SNPs were analyzed in human postmortem brain tissues and in cultured cells. Prepulse inhibition and locomotor activity in C57BL/6JJmsSlc mice with CB2 receptor antagonist AM630 administration was examined. RESULTS The analysis in the first population revealed nominally significant associations between schizophrenia and two SNPs, and the associations were replicated in the second population. The R63 allele of rs2501432 (R63Q) (p = .001), the C allele of rs12744386 (p = .005) and the haplotype of the R63-C allele (p = 5 x 10(-6)) were significantly increased among 1920 patients with schizophrenia compared with 1920 control subjects in the combined population. A significantly lower response to CB2 ligands in cultured CHO cells transfected with the R63 allele compared with those with Q63, and significantly lower CB2 receptor mRNA and protein levels found in human brain with the CC and CT genotypes of rs12744386 compared with TT genotype were observed. AM630 exacerbated MK-801- or methamphetamine-induced disturbance of prepulse inhibition and hyperactivity in C57BL/6JJmsSlc mice. CONCLUSIONS These findings indicate an increased risk of schizophrenia for people with low CB2 receptor function.


Journal of Neurochemistry | 2002

Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia

Kazuhiko Toyooka; Shuji Iritani; Takao Makifuchi; Osamu Shirakawa; Noboru Kitamura; Kiyoshi Maeda; Ryosuke Nakamura; Kazuhiro Niizato; Masahiko Watanabe; Akiyoshi Kakita; Hitoshi Takahashi; Toshiyuki Someya; Hiroyuki Nawa

Many postsynaptic density proteins carrying postsynaptic density‐95/discs large/zone occludens‐1 (PDZ) domain(s) interact with glutamate receptors to control receptor dynamics and synaptic plasticity. Here we examined the expression of PDZ proteins, synapse‐associated protein (SAP) 97, postsynaptic density (PSD)‐95, chapsyn‐110, GRIP1 and SAP102, in post‐mortem brains of schizophrenic patients and control subjects, and evaluated their contribution to schizophrenic pathology. Among these PDZ proteins, SAP97 exhibited the most marked change: SAP97 protein levels were decreased to less than half that of the control levels specifically in the prefrontal cortex of schizophrenic patients. In parallel, its binding partner, GluR1, similarly decreased in the same brain region. The correlation between SAP97 and GluR1 levels in control subjects was, however, altered in schizophrenic patients. SAP102 levels were also significantly reduced in the hippocampus of schizophrenic patients, but this reduction was correlated with sample storage time and post‐mortem interval. There were no changes in the levels of the other PDZ proteins in any of the regions examined. In addition, neuroleptic treatment failed to mimic the SAP97 change. These findings suggest that a phenotypic loss of SAP97 is associated with the postsynaptic impairment in prefrontal excitatory circuits of schizophrenic patients.


American Journal of Human Genetics | 2005

Genomewide High-Density SNP Linkage Analysis of 236 Japanese Families Supports the Existence of Schizophrenia Susceptibility Loci on Chromosomes 1p, 14q, and 20p

Tadao Arinami; Tsuyuka Ohtsuki; Hiroki Ishiguro; Hiroshi Ujike; Yuji Tanaka; Yukitaka Morita; Mari Mineta; Masashi Takeichi; Shigeto Yamada; Akira Imamura; Koichi Ohara; Haruo Shibuya; Kenshiro Ohara; Yasuo Suzuki; Tatsuyuki Muratake; Naoshi Kaneko; Toshiyuki Someya; Toshiya Inada; Takeo Yoshikawa; Tomoko Toyota; Kazuo Yamada; Takuya Kojima; Sakae Takahashi; Ohmori Osamu; Takahiro Shinkai; Michiko Nakamura; Hiroshi Fukuzako; Tomo Hashiguchi; Shin Ich Niwa; Takuya Ueno

The Japanese Schizophrenia Sib-Pair Linkage Group (JSSLG) is a multisite collaborative study group that was organized to create a national resource for affected sib pair (ASP) studies of schizophrenia in Japan. We used a high-density single-nucleotide-polymorphism (SNP) genotyping assay, the Illumina BeadArray linkage mapping panel (version 4) comprising 5,861 SNPs, to perform a genomewide linkage analysis of JSSLG samples comprising 236 Japanese families with 268 nonindependent ASPs with schizophrenia. All subjects were Japanese. Among these families, 122 families comprised the same subjects analyzed with short tandem repeat markers. All the probands and their siblings, with the exception of seven siblings with schizoaffective disorder, had schizophrenia. After excluding SNPs with high linkage disequilibrium, we found significant evidence of linkage of schizophrenia to chromosome 1p21.2-1p13.2 (LOD=3.39) and suggestive evidence of linkage to 14q11.2 (LOD=2.87), 14q11.2-q13.2 (LOD=2.33), and 20p12.1-p11.2 (LOD=2.33). Although linkage to these regions has received little attention, these regions are included in or partially overlap the 10 regions reported by Lewis et al. that passed the two aggregate criteria of a meta-analysis. Results of the present study--which, to our knowledge, is the first genomewide analysis of schizophrenia in ASPs of a single Asian ethnicity that is comparable to the analyses done of ASPs of European descent--indicate the existence of schizophrenia susceptibility loci that are common to different ethnic groups but that likely have different ethnicity-specific effects.


Psychiatry and Clinical Neurosciences | 2001

The Japanese version of the Barratt Impulsiveness Scale, 11th version (BIS-11) : Its reliability and validity

Toshiyuki Someya; Kaoru Sakado; Tetsuya Seki; Maki Kojima; Christopher Reist; Siu Wa Tang; Saburo Takahashi

Abstract No instrument for assessing impulsiveness has been developed in Japan. After translating the Barratt Impulsiveness Scale 11th version (BIS‐11) into Japanese, we investigated reliability and validity in student (n = 34) and worker (n = 416) samples. To assess test–retest reliability, the intraclass coefficient between test and retest was calculated in the student sample. Internal consistency was examined by calculating Cronbachs alpha in the worker sample. To see factor validity, we examined by confirmatory factor analysis whether the three‐factor model, proposed by a previous report, fit the data. The results showed that the Japanese version of the BIS‐11 had excellent test–retest reliability and acceptable internal consistency reliability. In addition, the Japanese version was judged to have similar factor structure to the original one. The Japanese version of the BIS‐11 is a reliable and valid measure and has possible utility for assessing impulsiveness.


Human Molecular Genetics | 2009

Involvement of SMARCA2/BRM in the SWI/SNF chromatin-remodeling complex in schizophrenia

Minori Koga; Hiroki Ishiguro; Saori Yazaki; Yasue Horiuchi; Makoto Arai; Kazuhiro Niizato; Shyuji Iritani; Masanari Itokawa; Toshiya Inada; Nakao Iwata; Norio Ozaki; Hiroshi Ujike; Hiroshi Kunugi; Tsukasa Sasaki; Makoto Takahashi; Yuichiro Watanabe; Toshiyuki Someya; Akiyoshi Kakita; Hitoshi Takahashi; Hiroyuki Nawa; Christian Muchardt; Moshe Yaniv; Tadao Arinami

Chromatin remodeling may play a role in the neurobiology of schizophrenia and the process, therefore, may be considered as a therapeutic target. The SMARCA2 gene encodes BRM in the SWI/SNF chromatin-remodeling complex, and associations of single nucleotide polymorphisms (SNPs) to schizophrenia were found in two linkage disequilibrium blocks in the SMARCA2 gene after screening of 11 883 SNPs (rs2296212; overall allelic P = 5.8 x 10(-5)) and subsequent screening of 22 genes involved in chromatin remodeling (rs3793490; overall allelic P = 2.0 x 10(-6)) in a Japanese population. A risk allele of a missense polymorphism (rs2296212) induced a lower nuclear localization efficiency of BRM, and risk alleles of intronic polymorphisms (rs3763627 and rs3793490) were associated with low SMARCA2 expression levels in the postmortem prefrontal cortex. A significant correlation in the fold changes of gene expression from schizophrenic prefrontal cortex (from the Stanley Medical Research Institute online genomics database) was seen with suppression of SMARCA2 in transfected human cells by specific siRNA, and of orthologous genes in the prefrontal cortex of Smarca2 knockout mice. Smarca2 knockout mice showed impaired social interaction and prepulse inhibition. Psychotogenic drugs lowered Smarca2 expression while antipsychotic drugs increased it in the mouse brain. These findings support the existence of a role for BRM in the pathophysiology of schizophrenia.


Psychiatry and Clinical Neurosciences | 2008

Factors impacting on psychological distress and recovery after the 2004 Niigata-Chuetsu earthquake, Japan: community-based study.

Hideki Kuwabara; Toshiki Shioiri; Shin-ichi Toyabe; Tsuyoshi Kawamura; Masataka Koizumi; Miki Ito‐Sawamura; Kouhei Akazawa; Toshiyuki Someya

Aim:  This study was undertaken 5 months after the 2004 Niigata–Chuetsu earthquake in Japan to assess factors that impacted on psychological distress and its recovery.


American Journal of Medical Genetics | 2009

Preliminary genome-wide association study of bipolar disorder in the Japanese population.

Eiji Hattori; Tomoko Toyota; Yuichi Ishitsuka; Yoshimi Iwayama; Kazuo Yamada; Hiroshi Ujike; Yukitaka Morita; Masafumi Kodama; Kenji Nakata; Yoshio Minabe; Kazuhiko Nakamura; Yasuhide Iwata; Nori Takei; Norio Mori; Hiroshi Naitoh; Yoshio Yamanouchi; Nakao Iwata; Norio Ozaki; Tadafumi Kato; Toru Nishikawa; Atsushi Kashiwa; Mika Suzuki; Kunihiko Shioe; Manabu Shinohara; Masami Hirano; Shinichiro Nanko; Akihisa Akahane; Mikako Ueno; Naoshi Kaneko; Yuichiro Watanabe

Recent progress in genotyping technology and the development of public databases has enabled large‐scale genome‐wide association tests with diseases. We performed a two‐stage genome‐wide association study (GWAS) of bipolar disorder (BD) in Japanese cohorts. First we used Affymetrix 100K GeneChip arrays in the analysis of 107 cases with bipolar I disorder and 107 controls, and selected markers that were nominally significant (P < 0.01) in at least one of the three models (1,577 markers in total). In the follow‐up stage, we analyzed these markers using an Illumina platform (1,526 markers; 51 markers were not designable for the platform) and an independent sample set, which consisted of 395 cases (bipolar I + II) and 409 controls. We also assessed the population stratification of current samples using principal components analysis. After the two‐stage analysis, 89 markers remained nominally significant (allelic P < 0.05) with the same allele being consistently over‐represented in both the first and the follow‐up stages. However, none of these were significant after correction for multiple‐testing by false discovery rates. Sample stratification was virtually negligible. Collectively, this is the first GWAS of BD in the Japanese population. But given the small sample size and the limited genomic coverage, these results should be taken as preliminary.

Collaboration


Dive into the Toshiyuki Someya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge