Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Towfique Raj is active.

Publication


Featured researches published by Towfique Raj.


Nature Neuroscience | 2016

Gene expression elucidates functional impact of polygenic risk for schizophrenia.

Menachem Fromer; Panos Roussos; Solveig K. Sieberts; Jessica S. Johnson; David H. Kavanagh; Thanneer M. Perumal; Douglas M. Ruderfer; Edwin C. Oh; Aaron Topol; Hardik Shah; Lambertus Klei; Robin Kramer; Dalila Pinto; Zeynep H. Gümüş; A. Ercument Cicek; Kristen Dang; Andrew Browne; Cong Lu; Lu Xie; Ben Readhead; Eli A. Stahl; Jianqiu Xiao; Mahsa Parvizi; Tymor Hamamsy; John F. Fullard; Ying-Chih Wang; Milind Mahajan; Jonathan Derry; Joel T. Dudley; Scott E. Hemby

Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.


Nature Neuroscience | 2017

A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease

Kuan lin Huang; Edoardo Marcora; Anna A. Pimenova; Antonio Di Narzo; Manav Kapoor; Sheng Chih Jin; Oscar Harari; Sarah Bertelsen; Benjamin P. Fairfax; Jake Czajkowski; Vincent Chouraki; Benjamin Grenier-Boley; Céline Bellenguez; Yuetiva Deming; Andrew McKenzie; Towfique Raj; Alan E. Renton; John Budde; Albert V. Smith; Annette L. Fitzpatrick; Joshua C. Bis; Anita L. DeStefano; Hieab H.H. Adams; M. Arfan Ikram; Sven J. van der Lee; Jorge L. Del-Aguila; Maria Victoria Fernandez; Laura Ibanez; Rebecca Sims; Valentina Escott-Price

A genome-wide survival analysis of 14,406 Alzheimers disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function.


Biological Psychiatry | 2018

Untangling Genetic Risk for Alzheimer’s Disease

Anna A. Pimenova; Towfique Raj; Alison Goate

Alzheimers disease (AD) is a genetically heterogeneous neurodegenerative disorder caused by fully penetrant single gene mutations in a minority of cases, while the majority of cases are sporadic or show modest familial clustering. These cases are of late onset and likely result from the interaction of many genes and the environment. More than 30 loci have been implicated in AD by a combination of linkage, genome-wide association, and whole genome/exome sequencing. We have learned from these studies that perturbations in endolysosomal, lipid metabolism, and immune response pathways substantially contribute to sporadic AD pathogenesis. We review here current knowledge about functions of AD susceptibility genes, highlighting cells of the myeloid lineage as drivers of at least part of the genetic component in late-onset AD. Although targeted resequencing utilized for the identification of causal variants has discovered coding mutations in some AD-associated genes, a lot of risk variants lie in noncoding regions. Here we discuss the use of functional genomics approaches that integrate transcriptomic, epigenetic, and endophenotype traits with systems biology to annotate genetic variants, and to facilitate discovery of AD risk genes. Further validation in cell culture and mouse models will be necessary to establish causality for these genes. This knowledge will allow mechanism-based design of novel therapeutic interventions in AD and promises coherent implementation of treatment in a personalized manner.


Molecular Psychiatry | 2018

Susceptibility to neurofibrillary tangles: role of the PTPRD locus and limited pleiotropy with other neuropathologies

Lori B. Chibnik; Charles C. White; Shubhabrata Mukherjee; Towfique Raj; Lei Yu; Eric B. Larson; Thomas J. Montine; C D Keene; Joshua A. Sonnen; Julie A. Schneider; Paul K. Crane; Joshua M. Shulman; David A. Bennett; P. L. De Jager

Tauopathies, including Alzheimer’s disease (AD) and other neurodegenerative conditions, are defined by a pathological hallmark: neurofibrillary tangles (NFTs). NFT accumulation is thought to be closely linked to cognitive decline in AD. Here, we perform a genome-wide association study for NFT pathologic burden and report the association of the PTPRD locus (rs560380, P=3.8 × 10−8) in 909 prospective autopsies. The association is replicated in an independent data set of 369 autopsies. The association of PTPRD with NFT is not dependent on the accumulation of amyloid pathology. In contrast, we found that the ZCWPW1 AD susceptibility variant influences NFT accumulation and that this effect is mediated by an accumulation of amyloid β plaques. We also performed complementary analyses to identify common pathways that influence multiple neuropathologies that coexist with NFT and found suggestive evidence that certain loci may influence multiple different neuropathological traits, including tau, amyloid β plaques, vascular injury and Lewy bodies. Overall, these analyses offer an evaluation of genetic susceptibility to NFT, a common end point for multiple different pathologic processes.


bioRxiv | 2017

Integrative analyses of splicing in the aging brain: role in susceptibility to Alzheimer's Disease

Towfique Raj; Yang Li; Garrett Wong; Satesh Ramdhani; Ying-Chih Wang; Bernard Ng; Minghui Wang; Ishaan Gupta; Vahram Haroutunian; Bin Zhang; Eric E. Schadt; Tracy L. Young-Pearse; Pamela Sklar; David A. Bennett; Philip L. De Jager

We use deep sequencing to identify sources of variation in mRNA splicing in the dorsolateral prefrontal cortex (DLFPC) of 450 subjects from two prospective cohort studies of aging. Hundreds of aberrant pre-mRNA splicing events are reproducibly associated with Alzheimer’s Disease (AD). We also generate a catalog of splicing quantitative trait loci (sQTL) effects in the human cortex: splicing of 3,198 genes is influenced by genetic variation. sQTLs are enriched among those variants influencing DNA methylation and histone acetylation. In assessing known AD loci, we report that altered splicing is the mechanism for the effects of the PICALM, CLU, and PTK2B susceptibility alleles. Further, we leverage our sQTL catalog to identify genes whose aberrant splicing is associated with AD and mediated by genetics. This transcriptome-wide association study identified 21 genes with significant associations, many of which are found in AD GWAS loci, but 8 are in novel AD loci, including FUS, which is a known amyotrophic lateral sclerosis (ALS) gene. This highlights an intriguing shared genetic architecture that is further elaborated by the convergence of old and new AD genes in autophagy-lysosomal-related pathways already implicated in AD and other neurodegenerative diseases. Overall, this study of the aging brain’s transcriptome provides evidence that dysregulation of mRNA splicing is a feature of AD and is, in some genetically-driven cases, causal.


American Journal of Human Genetics | 2017

Inferring Relevant Cell Types for Complex Traits by Using Single-Cell Gene Expression

Diego Calderon; Anand Bhaskar; David Knowles; David Golan; Towfique Raj; Audrey Qiuyan Fu; Jonathan K. Pritchard

Previous studies have prioritized trait-relevant cell types by looking for an enrichment of genome-wide association study (GWAS) signal within functional regions. However, these studies are limited in cell resolution by the lack of functional annotations from difficult-to-characterize or rare cell populations. Measurement of single-cell gene expression has become a popular method for characterizing novel cell types, and yet limited work has linked single-cell RNA sequencing (RNA-seq) to phenotypes of interest. To address this deficiency, we present RolyPoly, a regression-based polygenic model that can prioritize trait-relevant cell types and genes from GWAS summary statistics and gene expression data. RolyPoly is designed to use expression data from either bulk tissue or single-cell RNA-seq. In this study, we demonstrated RolyPolys accuracy through simulation and validated previously known tissue-trait associations. We discovered a significant association between microglia and late-onset Alzheimer disease and an association between schizophrenia and oligodendrocytes and replicating fetal cortical cells. Additionally, RolyPoly computes a trait-relevance score for each gene to reflect the importance of expression specific to a cell type. We found that differentially expressed genes in the prefrontal cortex of individuals with Alzheimer disease were significantly enriched with genes ranked highly by RolyPoly gene scores. Overall, our method represents a powerful framework for understanding the effect of common variants on cell types contributing to complex traits.


Nature Genetics | 2018

Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility

Towfique Raj; Yang I. Li; Garrett Wong; Jack Humphrey; Minghui Wang; Satesh Ramdhani; Ying-Chih Wang; Bernard Ng; Ishaan Gupta; Vahram Haroutunian; Eric E. Schadt; Tracy L. Young-Pearse; Bin Zhang; Pamela Sklar; David A. Bennett; Philip L. De Jager

Here we use deep sequencing to identify sources of variation in mRNA splicing in the dorsolateral prefrontal cortex (DLPFC) of 450 subjects from two aging cohorts. Hundreds of aberrant pre-mRNA splicing events are reproducibly associated with Alzheimer’s disease. We also generate a catalog of splicing quantitative trait loci (sQTL) effects: splicing of 3,006 genes is influenced by genetic variation. We report that altered splicing is the mechanism for the effects of the PICALM, CLU and PTK2B susceptibility alleles. Furthermore, we performed a transcriptome-wide association study and identified 21 genes with significant associations with Alzheimer’s disease, many of which are found in known loci, whereas 8 are in novel loci. These results highlight the convergence of old and new genes associated with Alzheimer’s disease in autophagy–lysosomal-related pathways. Overall, this study of the transcriptome of the aging brain provides evidence that dysregulation of mRNA splicing is a feature of Alzheimer’s disease and is, in some cases, genetically driven.Analysis of mRNA splicing in the dorsolateral prefrontal cortex from two cohorts established to study aging identifies variations in pre-mRNA splicing events that are associated with Alzheimer’s disease.


PLOS ONE | 2018

High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development

Marco M. Hefti; Kurt W. Farrell; SoongHo Kim; Kathryn R. Bowles; Mary Fowkes; Towfique Raj; John F. Crary

The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.


American Journal of Human Genetics | 2018

Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS

Amanda Dobbyn; Laura M. Huckins; James Boocock; Laura G. Sloofman; Benjamin S. Glicksberg; Claudia Giambartolomei; Gabriel E. Hoffman; Thanneer M. Perumal; Kiran Girdhar; Yan Jiang; Towfique Raj; Douglas Ruderfer; Robin Kramer; Dalila Pinto; Pamela Sklar; Joseph D. Buxbaum; Bernie Devlin; David A. Lewis; Raquel E. Gur; Chang-Gyu Hahn; Keisuke Hirai; Hiroyoshi Toyoshiba; Enrico Domenici; Laurent Essioux; Lara M. Mangravite; Mette A. Peters; Thomas Lehner; Barbara K. Lipska; A. Ercument Cicek; Cong Lu

Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with expression quantitative trait loci (eQTL) and determining which variants underlie both GWAS and eQTL signals. Most analyses, however, consider only the marginal eQTL signal, rather than dissect this signal into multiple conditionally independent signals for each gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts, leads to improved fine mapping of GWAS associations. Using genotypes and gene expression levels from post-mortem human brain samples (n = 467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with context-specific (e.g., tissue-, cell type-, or developmental time point-specific) regulation of gene expression. Integrating the 2014 Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC primary and conditional eQTL data reveals 40 loci with strong evidence for co-localization (posterior probability > 0.8), including six loci with co-localization of conditional eQTL. Our co-localization analyses support previously reported genes, identify novel genes associated with schizophrenia risk, and provide specific hypotheses for their functional follow-up.


bioRxiv | 2017

A common haplotype lowers SPI1 (PU.1) expression in myeloid cells and delays age at onset for Alzheimer's disease

Kuan-lin Huang; Edoardo Marcora; Anna A. Pimenova; Antonio Di Narzo; Manav Kapoor; Sheng Chih Jin; Oscar Harari; Sarah Bertelsen; Benjamin P. Fairfax; Jake Czajkowski; Vincent Chouraki; Benjamin Grenier-Boley; Céline Bellenguez; Yuetiva Deming; Andrew McKenzie; Towfique Raj; Alan E. Renton; John Budde; Albert V. Smith; Annette L. Fitzpatrick; Joshua C. Bis; Anita L. DeStefano; Hieab H.H. Adams; M. Arfan Ikram; Sven J. van der Lee; Jorge L. Del-Aguila; Maria Victoria Fernandez; Laura Ibanez; Rebecca Sims; Valentina Escott-Price

In this study we used age at onset of Alzheimer’s disease (AD), cerebrospinal fluid (CSF) biomarkers, and eQTL datasets to fine map AD-associated GWAS loci and investigate the underlying mechanisms. In a genome-wide survival analysis of 40,255 samples, eight of the previously reported AD risk loci are significantly (p < 5×10−8) or suggestively (p < 1×10−5) associated with age at onset-defined survival and a further fourteen novel loci reached suggestive significance. One third (8/22) of these SNPs are cis-eQTLs in monocytes and/or macrophages, including rs7930318 associated with expression of MS4A4A and MS4A6A. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, shows association with higher age at onset of AD (p=8.40×10−6), higher CSF levels of Aβ42 (p=1.2×10−4), and lower expression of SPI1 in monocytes (p = 1.50×10−105) and macrophages (p = 6.41×10−87). SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability is enriched within the SPI1 cistromes of monocytes and macrophages, implicating a myeloid PU.1 target gene network in the etiology of AD. Finally, experimentally altered PU.1 levels are correlated with phagocytic activity of BV2 mouse microglial cells and specific changes in the expression of multiple myeloid-expressed genes, including the mouse orthologs of AD risk genes, MS4A4A and MS4A6A. Our results collectively suggest that lower SPI1 expression reduces AD risk by modulating myeloid cell gene expression and function.

Collaboration


Dive into the Towfique Raj's collaboration.

Top Co-Authors

Avatar

Anna A. Pimenova

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

David A. Bennett

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Garrett Wong

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Pamela Sklar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying-Chih Wang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

A. Ercument Cicek

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Alan E. Renton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew McKenzie

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge