Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tracy L. Kivell is active.

Publication


Featured researches published by Tracy L. Kivell.


eLife | 2015

Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa

Lee R. Berger; John Hawks; Darryl J. de Ruiter; Steven E. Churchill; Peter Schmid; Lucas K. Delezene; Tracy L. Kivell; Heather M. Garvin; Scott A. Williams; Jeremy M. DeSilva; Matthew M. Skinner; Charles M. Musiba; Noel Cameron; Trenton W. Holliday; William E. H. Harcourt-Smith; Rebecca Rogers Ackermann; Markus Bastir; Barry Bogin; Debra R. Bolter; Juliet K. Brophy; Zachary Cofran; Kimberly A. Congdon; Andrew S. Deane; Mana Dembo; Michelle S.M. Drapeau; Marina Elliott; Elen M Feuerriegel; Daniel García-Martínez; David J. Green; Alia N. Gurtov

Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa. DOI: http://dx.doi.org/10.7554/eLife.09560.001


Science | 2011

Australopithecus sediba Hand Demonstrates Mosaic Evolution of Locomotor and Manipulative Abilities

Tracy L. Kivell; Job M. Kibii; Steven E. Churchill; Peter Schmid; Lee R. Berger

The hand of Australopithecus sediba, a rare example in the hominid fossil record, shows short fingers and a long thumb consistent with improved precision gripping while retaining strength for climbing. Hand bones from a single individual with a clear taxonomic affiliation are scarce in the hominin fossil record, which has hampered understanding the evolution of manipulative abilities in hominins. Here we describe and analyze a nearly complete wrist and hand of an adult female [Malapa Hominin 2 (MH2)] Australopithecus sediba from Malapa, South Africa (1.977 million years ago). The hand presents a suite of Australopithecus-like features, such as a strong flexor apparatus associated with arboreal locomotion, and Homo-like features, such as a long thumb and short fingers associated with precision gripping and possibly stone tool production. Comparisons to other fossil hominins suggest that there were at least two distinct hand morphotypes around the Plio-Pleistocene transition. The MH2 fossils suggest that Au. sediba may represent a basal condition associated with early stone tool use and production.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Independent evolution of knuckle-walking in African apes shows that humans did not evolve from a knuckle-walking ancestor

Tracy L. Kivell; Daniel Schmitt

Despite decades of debate, it remains unclear whether human bipedalism evolved from a terrestrial knuckle-walking ancestor or from a more generalized, arboreal ape ancestor. Proponents of the knuckle-walking hypothesis focused on the wrist and hand to find morphological evidence of this behavior in the human fossil record. These studies, however, have not examined variation or development of purported knuckle-walking features in apes or other primates, data that are critical to resolution of this long-standing debate. Here we present novel data on the frequency and development of putative knuckle-walking features of the wrist in apes and monkeys. We use these data to test the hypothesis that all knuckle-walking apes share similar anatomical features and that these features can be used to reliably infer locomotor behavior in our extinct ancestors. Contrary to previous expectations, features long-assumed to indicate knuckle-walking behavior are not found in all African apes, show different developmental patterns across species, and are found in nonknuckle-walking primates as well. However, variation among African ape wrist morphology can be clearly explained if we accept the likely independent evolution of 2 fundamentally different biomechanical modes of knuckle-walking: an extended wrist posture in an arboreal environment (Pan) versus a neutral, columnar hand posture in a terrestrial environment (Gorilla). The presence of purported knuckle-walking features in the hominin wrist can thus be viewed as evidence of arboreality, not terrestriality, and provide evidence that human bipedalism evolved from a more arboreal ancestor occupying the ecological niche common to all living apes.


Science | 2015

Human-like hand use in Australopithecus africanus

Matthew M. Skinner; Nicholas B. Stephens; Zewdi J. Tsegai; Alexandra C. Foote; Huynh Nhu Nguyen; Thomas Gross; Dieter H. Pahr; Jean-Jacques Hublin; Tracy L. Kivell

Getting a grip The evolution of the hand—particularly the opposable thumb—was key to the success of early humans. Without a precise grip, involving forceful opposition of thumb with fingers, tool technology could not have emerged. Skinner et al. analyzed the internal bone structure of Pliocene Australopithecus hands, dated at 3.2 million years old. Internal bone structure reveals the patterns and directions of forces operating on the hand, providing clues to the kinds of activities performed. Modern human-like hand postures consistent with the habitual use of tools appeared about half a million years earlier than the first archaeological evidence of stone tools. Science, this issue p. 395 The internal bone structure of Pliocene australopiths suggests that precision grip evolved 3.2 million years ago. The distinctly human ability for forceful precision and power “squeeze” gripping is linked to two key evolutionary transitions in hand use: a reduction in arboreal climbing and the manufacture and use of tools. However, it is unclear when these locomotory and manipulative transitions occurred. Here we show that Australopithecus africanus (~3 to 2 million years ago) and several Pleistocene hominins, traditionally considered not to have engaged in habitual tool manufacture, have a human-like trabecular bone pattern in the metacarpals consistent with forceful opposition of the thumb and fingers typically adopted during tool use. These results support archaeological evidence for stone tool use in australopiths and provide morphological evidence that Pliocene hominins achieved human-like hand postures much earlier and more frequently than previously considered.


Science | 2015

Human-like hand-use in the hand of Australopithecus africanus

Matthew M. Skinner; Nicholas B. Stephens; Zewdi J. Tsegai; Alexandra C. Foote; N Huynh Nguyen; Thomas Gross; Dieter H. Pahr; Jean-Jacques Hublin; Tracy L. Kivell

Getting a grip The evolution of the hand—particularly the opposable thumb—was key to the success of early humans. Without a precise grip, involving forceful opposition of thumb with fingers, tool technology could not have emerged. Skinner et al. analyzed the internal bone structure of Pliocene Australopithecus hands, dated at 3.2 million years old. Internal bone structure reveals the patterns and directions of forces operating on the hand, providing clues to the kinds of activities performed. Modern human-like hand postures consistent with the habitual use of tools appeared about half a million years earlier than the first archaeological evidence of stone tools. Science, this issue p. 395 The internal bone structure of Pliocene australopiths suggests that precision grip evolved 3.2 million years ago. The distinctly human ability for forceful precision and power “squeeze” gripping is linked to two key evolutionary transitions in hand use: a reduction in arboreal climbing and the manufacture and use of tools. However, it is unclear when these locomotory and manipulative transitions occurred. Here we show that Australopithecus africanus (~3 to 2 million years ago) and several Pleistocene hominins, traditionally considered not to have engaged in habitual tool manufacture, have a human-like trabecular bone pattern in the metacarpals consistent with forceful opposition of the thumb and fingers typically adopted during tool use. These results support archaeological evidence for stone tool use in australopiths and provide morphological evidence that Pliocene hominins achieved human-like hand postures much earlier and more frequently than previously considered.


Nature Communications | 2015

The hand of Homo naledi

Tracy L. Kivell; Andrew S. Deane; Matthew W. Tocheri; Caley M. Orr; Peter Schmid; John Hawks; Lee R. Berger; Steven E. Churchill

A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Recent origin of low trabecular bone density in modern humans

Habiba Chirchir; Tracy L. Kivell; Christopher B. Ruff; Jean-Jacques Hublin; Kristian J. Carlson; Bernhard Zipfel; Brian G. Richmond

Significance The human skeleton is unique in having low trabecular density representing a lightly built human body form. However, it remains unknown when during human evolution this unique characteristic first appeared. To our knowledge, this study is the first to examine trabecular bone density throughout the skeleton of fossil hominins spanning several million years. The results show that trabecular density remained high throughout human evolution until it decreased significantly in recent modern humans, suggesting a possible link between changes in our skeleton and increased sedentism. Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.


PLOS ONE | 2013

Trabecular bone structure correlates with hand posture and use in hominoids.

Zewdi J. Tsegai; Tracy L. Kivell; Thomas Gross; Huynh Nhu Nguyen; Dieter H. Pahr; Jeroen B. Smaers; Matthew M. Skinner

Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hominoids. Building upon traditional volume of interest-based analyses, we apply a whole-epiphysis analytical approach using high-resolution microtomographic scans of the hominoid third metacarpal to investigate whether trabecular structure reflects differences in hand posture and loading in knuckle-walking (Gorilla, Pan), suspensory (Pongo, Hylobates and Symphalangus) and manipulative (Homo) taxa. Additionally, a comparative phylogenetic method was used to analyse rates of evolutionary changes in trabecular parameters. Results demonstrate that trabecular bone volume distribution and regions of greatest stiffness (i.e., Youngs modulus) correspond with predicted loading of the hand in each behavioural category. In suspensory and manipulative taxa, regions of high bone volume and greatest stiffness are concentrated on the palmar or distopalmar regions of the metacarpal head, whereas knuckle-walking taxa show greater bone volume and stiffness throughout the head, and particularly in the dorsal region; patterns that correspond with the highest predicted joint reaction forces. Trabecular structure in knuckle-walking taxa is characterised by high bone volume fraction and a high degree of anisotropy in contrast to the suspensory brachiators. Humans, in which the hand is used primarily for manipulation, have a low bone volume fraction and a variable degree of anisotropy. Finally, when trabecular parameters are mapped onto a molecular-based phylogeny, we show that the rates of change in trabecular structure vary across the hominoid clade. Our results support a link between inferred behaviour and trabecular structure in extant hominoids that can be informative for reconstructing behaviour in fossil primates.


Journal of Anatomy | 2011

Methodological considerations for analyzing trabecular architecture: an example from the primate hand

Tracy L. Kivell; Matthew M. Skinner; Richard A. Lazenby; Jean-Jacques Hublin

Micro‐computed tomographic analyses of trabecular bone architecture have been used to clarify the link between positional behavior and skeletal anatomy in primates. However, there are methodological decisions associated with quantifying and comparing trabecular anatomy across taxa that vary greatly in body size and morphology that can affect characterizations of trabecular architecture, such as choice of the volume of interest (VOI) size and location. The potential effects of these decisions may be amplified in small, irregular‐shaped bones of the hands and feet that have more complex external morphology and more heterogeneous trabecular structure compared to, for example, the spherical epiphysis of the femoral head. In this study we investigate the effects of changes in VOI size and location on standard trabecular parameters in two bones of the hand, the capitate and third metacarpal, in a diverse sample of nonhuman primates that vary greatly in morphology, body mass and positional behavior. Results demonstrate that changes in VOI location and, to a lesser extent, changes in VOI size had a dramatic affect on many trabecular parameters, especially trabecular connectivity and structure (rods vs. plates), degree of anisotropy, and the primary orientation of the trabeculae. Although previous research has shown that some trabecular parameters are susceptible to slight variations in methodology (e.g. VOI location, scan resolution), this study provides a quantification of these effects in hand bones of a diverse sample of primates. An a priori understanding of the inherent biases created by the choice of VOI size and particularly location is critical to robust trabecular analysis and functional interpretation, especially in small bones with complex arthroses.


Philosophical Transactions of the Royal Society B | 2015

Evidence in hand: Recent discoveries and the early evolution of human manual manipulation

Tracy L. Kivell

For several decades, it was largely assumed that stone tool use and production were abilities limited to the genus Homo. However, growing palaeontological and archaeological evidence, comparative extant primate studies, as well as results from methodological advancements in biomechanics and morphological analyses, have been gradually accumulating and now provide strong support for more advanced manual manipulative abilities and tool-related behaviours in pre-Homo hominins than has been traditionally recognized. Here, I review the fossil evidence related to early hominin dexterity, including the recent discoveries of relatively complete early hominin hand skeletons, and new methodologies that are providing a more holistic interpretation of hand function, and insight into how our early ancestors may have balanced the functional requirements of both arboreal locomotion and tool-related behaviours.

Collaboration


Dive into the Tracy L. Kivell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter H. Pahr

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Gross

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Schmid

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge