Tracy L. Taylor
Bristol-Myers Squibb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tracy L. Taylor.
Journal of Pharmacology and Experimental Therapeutics | 2009
Kathleen M. Gillooly; Mark A. Pattoli; Tracy L. Taylor; Laishun Chen; Lihong Cheng; Kurt R. Gregor; Gena S. Whitney; Vojkan Susulic; Scott H. Watterson; James Kempson; William J. Pitts; Hollie Booth-Lute; Guchen Yang; Paul Davies; Daniel W. Kukral; Joann Strnad; Kim W. McIntyre; Celia D'Arienzo; Luisa Salter-Cid; Zheng Yang; David Wang-Iverson; James R. Burke
We have previously shown that inhibitors of IκB kinase β (IKKβ), including 4(2′-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline (BMS-345541), are efficacious against experimental arthritis in rodents. In our efforts to identify an analog as a clinical candidate for the treatment of autoimmune and inflammatory disorders, we have discovered the potent and highly selective IKKβ inhibitor 2-methoxy-N-((6-(1-methyl-4-(methylamino)-1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridin-7-yl)pyridin-2-yl)methyl)acetamide (BMS-066). Investigations of its pharmacology in rodent models of experimental arthritis showed that BMS-066 at doses of 5 and 10 mg/kg once daily was effective at protecting rats against adjuvant-induced arthritis, despite showing only weak inhibition at 10 mg/kg against a pharmacodymanic model of tumor necrosis factor α production in rats challenged with lipopolysaccharide. The duration of exposure in rats indicated that just 6 to 9 h of coverage per day of the concentration necessary to inhibit IKKβ by 50% in vivo was necessary for protection against arthritis. Similar findings were observed in the mouse collagen-induced arthritis model, with efficacy observed at a dose providing only 6 h of coverage per day of the concentration necessary to inhibit IKKβ by 50%. This finding probably results from the cumulative effect on multiple cellular mechanisms that contribute to autoimmunity and joint destruction, because BMS-066 was shown to inhibit a broad spectrum of activities such as T cell proliferation, B cell function, cytokine and interleukin secretion from monocytes, TH17 cell function and regulation, and osteoclastogenesis. Thus, only partial and transient inhibition of IKKβ is sufficient to yield dramatic benefit in vivo, and this understanding will be important in the clinical development of IKKβ inhibitors.
Bioorganic & Medicinal Chemistry Letters | 2008
John Hynes; Hong Wu; Sidney Pitt; Ding Ren Shen; Rosemary Zhang; Gary L. Schieven; Kathleen M. Gillooly; David J. Shuster; Tracy L. Taylor; Xiaoxia Yang; Kim W. McIntyre; Murray McKinnon; Hongjian Zhang; Punit Marathe; Arthur M. Doweyko; Kevin Kish; Susan E. Kiefer; John S. Sack; John A. Newitt; Joel C. Barrish; John H. Dodd; Katerina Leftheris
A novel structural class of p38alpha MAP kinase inhibitors has been identified via iterative SAR studies of a focused deck screen hit. Optimization of the lead series generated 6e, BMS-640994, a potent and selective p38alpha inhibitor that is orally efficacious in rodent models of acute and chronic inflammation.
Journal of Medicinal Chemistry | 2016
Scott H. Watterson; Junqing Guo; Steve Spergel; Charles M. Langevine; Robert V. Moquin; Ding Ren Shen; Melissa Yarde; Mary Ellen Cvijic; Dana Banas; Richard Liu; Suzanne J. Suchard; Kathleen M. Gillooly; Tracy L. Taylor; Sandra Rex-Rabe; David J. Shuster; Kim W. McIntyre; Georgia Cornelius; Celia D’Arienzo; Anthony Marino; Praveen Balimane; Bethanne M. Warrack; Luisa Salter-Cid; Murray McKinnon; Joel C. Barrish; Percy H. Carter; William J. Pitts; Jenny Xie; Alaric J. Dyckman
Sphingosine 1-phosphate (S1P) is the endogenous ligand for the sphingosine 1-phosphate receptors (S1P1-5) and evokes a variety of cellular responses through their stimulation. The interaction of S1P with the S1P receptors plays a fundamental physiological role in a number of processes including vascular development and stabilization, lymphocyte migration, and proliferation. Agonism of S1P1, in particular, has been shown to play a significant role in lymphocyte trafficking from the thymus and secondary lymphoid organs, resulting in immunosuppression. This article will detail the discovery and SAR of a potent and selective series of isoxazole based full agonists of S1P1. Isoxazole 6d demonstrated impressive efficacy when administered orally in a rat model of arthritis and in a mouse experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis.
Journal of Medicinal Chemistry | 2016
George V. De Lucca; Qing Shi; Qingjie Liu; Douglas G. Batt; Myra Beaudoin Bertrand; Rick Rampulla; Arvind Mathur; Lorell Discenza; Celia D’Arienzo; Jun Dai; Mary T. Obermeier; Rodney Vickery; Yingru Zhang; Zheng Yang; Punit Marathe; Andrew J. Tebben; Jodi K. Muckelbauer; ChiehYing J. Chang; Huiping Zhang; Kathleen M. Gillooly; Tracy L. Taylor; Mark A. Pattoli; Stacey Skala; Daniel W. Kukral; Kim W. McIntyre; Luisa Salter-Cid; Aberra Fura; James R. Burke; Joel C. Barrish; Percy H. Carter
Brutons tyrosine kinase (BTK) belongs to the TEC family of nonreceptor tyrosine kinases and plays a critical role in multiple cell types responsible for numerous autoimmune diseases. This article will detail the structure-activity relationships (SARs) leading to a novel second generation series of potent and selective reversible carbazole inhibitors of BTK. With an excellent pharmacokinetic profile as well as demonstrated in vivo activity and an acceptable safety profile, 7-(2-hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide 6 (BMS-935177) was selected to advance into clinical development.
Journal of Medicinal Chemistry | 2016
John L. Gilmore; James E. Sheppeck; Scott H. Watterson; Lauren Haque; Parag Mukhopadhyay; Andrew J. Tebben; Michael A. Galella; Ding Ren Shen; Melissa Yarde; Mary Ellen Cvijic; Virna Borowski; Kathleen M. Gillooly; Tracy L. Taylor; Kim W. McIntyre; Bethanne M. Warrack; Paul Levesque; Julia P. Li; Georgia Cornelius; Celia D’Arienzo; Anthony Marino; Praveen Balimane; Luisa Salter-Cid; Joel C. Barrish; William J. Pitts; Percy H. Carter; Jenny Xie; Alaric J. Dyckman
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates a multitude of physiological processes such as lymphocyte trafficking, cardiac function, vascular development, and inflammation. Because of the ability of S1P1 receptor agonists to suppress lymphocyte egress, they have great potential as therapeutic agents in a variety of autoimmune diseases. In this article, the discovery of selective, direct acting S1P1 agonists utilizing an ethanolamine scaffold containing a terminal carboxylic acid is described. Potent S1P1 agonists such as compounds 18a and 19a which have greater than 1000-fold selectivity over S1P3 are described. These compounds efficiently reduce blood lymphocyte counts in rats through 24 h after single doses of 1 and 0.3 mpk, respectively. Pharmacodynamic properties of both compounds are discussed. Compound 19a was further studied in two preclinical models of disease, exhibiting good efficacy in both the rat adjuvant arthritis model (AA) and the mouse experimental autoimmune encephalomyelitis model (EAE).
ACS Medicinal Chemistry Letters | 2016
T. G. Murali Dhar; Hai-Yun Xiao; Jenny Xie; Lois D. Lehman-McKeeman; Dauh-Rurng Wu; Marta Dabros; Xiaoxia Yang; Tracy L. Taylor; Xia D. Zhou; Elizabeth M. Heimrich; Rochelle Thomas; Kim W. McIntyre; Bethanne M. Warrack; Hong Shi; Paul Levesque; Jia L. Zhu; James K. Hennan; Praveen Balimane; Zheng Yang; Anthony Marino; Georgia Cornelius; Celia D’Arienzo; Arvind Mathur; Ding Ren Shen; Mary Ellen Cvijic; Luisa Salter-Cid; Joel C. Barrish; Percy H. Carter; Alaric J. Dyckman
Clinical validation of S1P receptor modulation therapy was achieved with the approval of fingolimod (Gilenya, 1) as the first oral therapy for relapsing remitting multiple sclerosis. However, 1 causes a dose-dependent reduction in the heart rate (bradycardia), which occurs within hours after first dose. We disclose the identification of clinical compound BMS-986104 (3d), a novel S1P1 receptor modulator, which demonstrates ligand-biased signaling and differentiates from 1 in terms of cardiovascular and pulmonary safety based on preclinical pharmacology while showing equivalent efficacy in a T-cell transfer colitis model.
Journal of Medicinal Chemistry | 2016
Michael G. Yang; Zili Xiao; T. G. Murali Dhar; Hai-Yun Xiao; John L. Gilmore; David Marcoux; Jenny Xie; Kim W. McIntyre; Tracy L. Taylor; Virna Borowski; Elizabeth M. Heimrich; Yu-Wen Li; Jianlin Feng; Alda Fernandes; Zheng Yang; Praveen Balimane; Anthony Marino; Georgia Cornelius; Bethanne M. Warrack; Arvind Mathur; Dauh-Rurng Wu; Peng Li; Anuradha Gupta; Bala Pragalathan; Ding Ren Shen; Mary Ellen Cvijic; Lois D. Lehman-McKeeman; Luisa Salter-Cid; Joel C. Barrish; Percy H. Carter
We describe a highly efficient route for the synthesis of 4a (BMS-986104). A key step in the synthesis is the asymmetric hydroboration of trisubstituted alkene 6. Particularly given the known difficulties involved in this type of transformation (6 → 7), the current methodology provides an efficient approach to prepare this class of compounds. In addition, we disclose the efficacy of 4a in a mouse EAE model, which is comparable to 4c (FTY720). Mechanistically, 4a exhibited excellent remyelinating effects on lysophosphatidylcholine (LPC) induced demyelination in a three-dimensional brain cell culture assay.
Bioorganic & Medicinal Chemistry Letters | 2016
Junqing Guo; Scott H. Watterson; Steven H. Spergel; James Kempson; Charles M. Langevine; Ding Ren Shen; Melissa Yarde; Mary Ellen Cvijic; Dana Banas; Richard Liu; Suzanne J. Suchard; Kathleen M. Gillooly; Tracy L. Taylor; Sandra Rex-Rabe; David J. Shuster; Kim W. McIntyre; Georgia Cornelius; Celia D’Arienzo; Anthony Marino; Praveen Balimane; Luisa Salter-Cid; Murray McKinnon; Joel C. Barrish; Percy H. Carter; William J. Pitts; Jenny Xie; Alaric J. Dyckman
The synthesis and structure-activity relationship (SAR) of a series of pyridyl-isoxazole based agonists of S1P1 are discussed. Compound 5b provided potent in vitro activity with selectivity, had an acceptable pharmacokinetic profile, and demonstrated efficacy in a dose dependent manner when administered orally in a rodent model of arthritis.
PLOS ONE | 2017
Kathleen M. Gillooly; Claudine Pulicicchio; Mark A. Pattoli; Lihong Cheng; Stacey Skala; Elizabeth M. Heimrich; Kim W. McIntyre; Tracy L. Taylor; Daniel W. Kukral; Shailesh Dudhgaonkar; Jignesh Nagar; Dana Banas; Scott H. Watterson; Joseph A. Tino; Aberra Fura; James R. Burke
Bruton’s tyrosine kinase (BTK) regulates critical signal transduction pathways involved in the pathobiology of rheumatoid arthritis (RA) and other autoimmune disorders. BMS-986142 is a potent and highly selective reversible small molecule inhibitor of BTK currently being investigated in clinical trials for the treatment of both RA and primary Sjögren’s syndrome. In the present report, we detail the in vitro and in vivo pharmacology of BMS-986142 and show this agent provides potent and selective inhibition of BTK (IC50 = 0.5 nM), blocks antigen receptor-dependent signaling and functional endpoints (cytokine production, co-stimulatory molecule expression, and proliferation) in human B cells (IC50 ≤ 5 nM), inhibits Fcγ receptor-dependent cytokine production from peripheral blood mononuclear cells, and blocks RANK-L-induced osteoclastogenesis. Through the benefits of impacting these important drivers of autoimmunity, BMS-986142 demonstrated robust efficacy in murine models of rheumatoid arthritis (RA), including collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA). In both models, robust efficacy was observed without continuous, complete inhibition of BTK. When a suboptimal dose of BMS-986142 was combined with other agents representing the current standard of care for RA (e.g., methotrexate, the TNFα antagonist etanercept, or the murine form of CTLA4-Ig) in the CIA model, improved efficacy compared to either agent alone was observed. The results suggest BMS-986142 represents a potential therapeutic for clinical investigation in RA, as monotherapy or co-administered with agents with complementary mechanisms of action.
Journal of Medicinal Chemistry | 2015
Chunjian Liu; James Lin; John Hynes; Hong Wu; Stephen T. Wrobleski; Shuqun Lin; T. G. Murali Dhar; Jung-Hui Sun; Sam T. Chao; Rulin Zhao; Bei Wang; Bang-Chi Chen; Gerry Everlof; Christoph Gesenberg; Hongjian Zhang; Punit Marathe; Kim W. McIntyre; Tracy L. Taylor; Kathleen M. Gillooly; David J. Shuster; Murray McKinnon; John H. Dodd; Joel C. Barrish; Gary L. Schieven; Katerina Leftheris
In search for prodrugs to address the issue of pH-dependent solubility and exposure associated with 1 (BMS-582949), a previously disclosed phase II clinical p38α MAP kinase inhibitor, a structurally novel clinical prodrug, 2 (BMS-751324), featuring a carbamoylmethylene linked promoiety containing hydroxyphenyl acetic acid (HPA) derived ester and phosphate functionalities, was identified. Prodrug 2 was not only stable but also water-soluble under both acidic and neutral conditions. It was effectively bioconverted into parent drug 1 in vivo by alkaline phosphatase and esterase in a stepwise manner, providing higher exposure of 1 compared to its direct administration, especially within higher dose ranges. In a rat LPS-induced TNFα pharmacodynamic model and a rat adjuvant arthritis model, 2 demonstrated similar efficacy to 1. Most importantly, it was shown in clinical studies that prodrug 2 was indeed effective in addressing the pH-dependent absorption issue associated with 1.